Analisis Sentimen Komentar Twitter pada Pemilu 2024 Indonesia Berbantuan Situs Monkeylearn
Keywords:
Sentiment language, Irony, sarcasm, cynicism, TwitterAbstract
This study aims to classify and identify the meaning of sentiment language to reduce misconceptions or misinterpretations of sentiment language in Twitter comment section regarding the 2024 general election in Indonesia and presidential candidates: Anies Baswedan-Muhaimin Iskandar, Prabowo Subianto-Gibran Rakabuming, Ganjar Pranowo-Mahfud M. D., as well as legislative canditates and the course of election. This research is descriptive qualitative and uses neutral language processing (NLP) methods, namely sentiment analysis lexicon-based in the form of manual labelling through identification of lexical indications and machine labelling by utilizing the sentiment analysis site Monkeylearn in unpaid mode or simple analysis on the surface of lexical indication data without any computational data processing and application of semantic theory to analyze changes in the meaning field and taste value in the form of sarcastic language styles. The results of this study are the classification of negative sentiment language in as much as twenty data, positive as much as six data, neutral as much as one data as well as the identification of three common sarcasm language styles in negative sentiment, namely irony, satire, and sarcasm as well as the tendency of expressing negative sentiments by Twitter users regarding candidates and the course of the election with piercing meanings but delivered with subtle language along with high negative sentiment scores but not in harsh language in the form of rhetorical cynicism dominance.
Downloads
References
Annissa, N. H. F., Dewi Kusumaningsih, & Titik Sudiatmi. (2022). Cyberbullying pada kolom komentar Tiktok @Denise_Cariesta dan implementasinya sebagai media pembelajaran. GERAM, 10(1), 49–54. https://doi.org/10.25299/geram.2022.vol10(1).8618
Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., & Singh, K. P. (2020). Analysis of Political Sentiment Orientations on Twitter. Procedia Computer Science, 167, 1821–1828. https://doi.org/10.1016/j.procs.2020.03.201
Antypas, D., Preece, A., & Camacho-Collados, J. (2023). Negativity spreads faster: A large-scale multilingual twitter analysis on the role of sentiment in political communication. Online Social Networks and Media, 33. https://doi.org/10.1016/j.osnem.2023.100242
Bharti, S. K., Vachha, B., Pradhan, R. K., Babu, K. S., & Jena, S. K. (2016). Sarcastic sentiment detection in tweets streamed in real time: a big data approach. Digital Communications and Networks, 2(3), 108–121. https://doi.org/10.1016/j.dcan.2016.06.002
Bonifazi, G., Cauteruccio, F., Corradini, E., Marchetti, M., Terracina, G., Ursino, D., & Virgili, L. (2023). A framework for investigating the dynamics of user and community sentiments in a social platform. Data and Knowledge Engineering, 146. https://doi.org/10.1016/j.datak.2023.102183
Denecke, K., & Reichenpfader, D. (2023). Sentiment analysis of clinical narratives: A scoping review. Journal of Biomedical Informatics, 140. https://doi.org/10.1016/j.jbi.2023.104336
Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review. Procedia Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174
Eisterhold, J., Attardo, S., & Boxer, D. (2006). Reactions to irony in discourse: evidence for the least disruption principle. Journal of Pragmatics, 38(8), 1239–1256. https://doi.org/10.1016/j.pragma.2004.12.003
Eleta, I., & Golbeck, J. (2014). Multilingual use of Twitter: Social networks at the language frontier. Computers in Human Behavior, 41, 424–432. https://doi.org/10.1016/j.chb.2014.05.005
Feng, S. (2023). Job satisfaction, management sentiment, and financial performance: Text analysis with job reviews from indeed.com. International Journal of Information Management Data Insights, 3(1). https://doi.org/10.1016/j.jjimei.2023.100155
Fischer, A., Voracek, M., & Tran, U. S. (2023). Semantic and sentiment similarities contribute to construct overlaps between mindfulness, Big Five, emotion regulation, and mental health. Personality and Individual Differences, 210. https://doi.org/10.1016/j.paid.2023.112241
Govindan, V., & Balakrishnan, V. (2022). A machine learning approach in analysing the effect of hyperboles using negative sentiment tweets for sarcasm detection. Journal of King Saud University - Computer and Information Sciences, 34(8), 5110–5120. https://doi.org/10.1016/j.jksuci.2022.01.008
Heru, A. (2018). Gaya bahasa sindiran ironi, sinisme, dan sarkasme dalam berita utama harian kompas. PEMBAHSI, 8(2), 43–54.
Ibrohim, M. O., & Budi, I. (2018). A Dataset and Preliminaries Study for Abusive Language Detection in Indonesian Social Media. Procedia Computer Science, 135, 222–229. https://doi.org/10.1016/j.procs.2018.08.169
Iddrisu, A. M., Mensah, S., Boafo, F., Yeluripati, G. R., & Kudjo, P. (2023). A sentiment analysis framework to classify instances of sarcastic sentiments within the aviation sector. International Journal of Information Management Data Insights, 3(2). https://doi.org/10.1016/j.jjimei.2023.100180
Joyce, B., & Ding, J. (2017). Sentiment analysis of tweets for the 2016 US Presidential election. IEEE.
Keraf, G. (2007). Diksi dan gaya bahasa (17th ed., Vol. 1). PT. Gramedia Pustaka Utama.
Kusumaningrum, R., Nisa, I. Z., Jayanto, R., Nawangsari, R. P., & Wibowo, A. (2023). Deep learning-based application for multilevel sentiment analysis of Indonesian hotel reviews. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17147
Lagerwerf, L. (2007). Irony and sarcasm in advertisements: Effects of relevant inappropriateness. Journal of Pragmatics, 39(10), 1702–1721. https://doi.org/10.1016/j.pragma.2007.05.002
Levant, E., Fein, O., & Giora, R. (2020). Default sarcastic interpretations of attenuated and intensified similes. Journal of Pragmatics, 166, 59–69. https://doi.org/10.1016/j.pragma.2020.05.015
Li, M., & Shi, Y. (2023). Sentiment analysis and prediction model based on Chinese government affairs microblogs. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e19091
Liu, S. (2023). You’re so mean but I like it – Metapragmatic evaluation of mock impoliteness in Danmaku comments. Discourse, Context and Media, 53. https://doi.org/10.1016/j.dcm.2023.100700
Liu, W., & Wang, Y. (2020). The role of offensive metaphors in Chinese diplomatic discourse. Discourse, Context and Media, 37. https://doi.org/10.1016/j.dcm.2020.100418
Loureiro, M. L., Alló, M., & Coello, P. (2022). Hot in Twitter: Assessing the emotional impacts of wildfires with sentiment analysis. Ecological Economics, 200. https://doi.org/10.1016/j.ecolecon.2022.107502
Luo, M., & Mu, X. (2022). Entity sentiment analysis in the news: A case study based on Negative Sentiment Smoothing Model (NSSM). International Journal of Information Management Data Insights, 2(1). https://doi.org/10.1016/j.jjimei.2022.100060
Meriem, A. Ben, Hlaoua, L., & Romdhane, L. Ben. (2021). A fuzzy approach for sarcasm detection in social networks. Procedia Computer Science, 192, 602–611. https://doi.org/10.1016/j.procs.2021.08.062
Musolff, A. (2017). Metaphor, irony and sarcasm in public discourse. Journal of Pragmatics, 109, 95–104. https://doi.org/10.1016/j.pragma.2016.12.010
Oyewola, D. O., Oladimeji, L. A., Julius, S. O., Kachalla, L. B., & Dada, E. G. (2023). Optimizing sentiment analysis of Nigerian 2023 presidential election using two-stage residual long short term memory. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14836
Rivière, E., Klein, M., & Champagne-Lavau, M. (2018). Using context and prosody in irony understanding: Variability amongst individuals. Journal of Pragmatics, 138, 165–172. https://doi.org/10.1016/j.pragma.2018.10.006
Rosenberg, E., Tarazona, C., Mallor, F., Eivazi, H., Pastor-Escuredo, D., Fuso-Nerini, F., & Vinuesa, R. (2023). Sentiment analysis on Twitter data towards climate action. Results in Engineering, 19. https://doi.org/10.1016/j.rineng.2023.101287
Sampietro, A., & Salmerón, L. (2021). Incivility in online news and Twitter: effects on attitudes toward scientific topics when reading in a second language. Language Sciences, 85. https://doi.org/10.1016/j.langsci.2021.101385
Sanders, R. E. (2013). The duality of speaker meaning: What makes self-repair, insincerity, and sarcasm possible. Journal of Pragmatics, 48(1), 112–122. https://doi.org/10.1016/j.pragma.2012.11.020
Saputri, Finas R. D., Nugrahani, F., & Suparmin. (2024). Sarcasm in the 2024 Presidential election campaign on Tiktok social media. Jurnal GERAM, 12(1), 87-95, https://doi.org/10.25299/geram.2024.16942
Saraswathi, N., Sasi Rooba, T., & Chakaravarthi, S. (2023). Improving the accuracy of sentiment analysis using a linguistic rule-based feature selection method in tourism reviews. Measurement: Sensors, 29. https://doi.org/10.1016/j.measen.2023.100888
Savilova, S. L., Shchitova, O. G., Shchitova, D. A., & Malgozhata, L. (2015). The Verbal-semantic Level of the Foreign Student Language Identity (Based on Internet Discourse). Procedia - Social and Behavioral Sciences, 215, 312–315. https://doi.org/10.1016/j.sbspro.2015.11.639
Saz-Rubio, M. M. del. (2023). Assessing impoliteness-related language in response to a season’s greeting posted by the Spanish and English Prime Ministers on Twitter. Journal of Pragmatics, 206, 31–55. https://doi.org/10.1016/j.pragma.2023.01.010
Sonawane, S. S., & Kolhe, S. R. (2020). TCSD: Term Co-occurrence Based Sarcasm Detection from Twitter Trends. Procedia Computer Science, 167, 830–839. https://doi.org/10.1016/j.procs.2020.03.422
Sosnina, A. A. (2015). Semantic Relations of the Adjective Empty in Modern English Language. Procedia - Social and Behavioral Sciences, 200, 531–536. https://doi.org/10.1016/j.sbspro.2015.08.017
Spinde, T., Richter, E., Wessel, M., Kulshrestha, J., & Donnay, K. (2023). What do Twitter comments tell about news article bias? Assessing the impact of news article bias on its perception on Twitter. Online Social Networks and Media, 37–38. https://doi.org/10.1016/j.osnem.2023.100264
Stoykova, V. (2013). Acquisition of Basic Lexical Semantic Conceptual Relations Using Specialized Dictionaries. Procedia - Social and Behavioral Sciences, 93, 2095–2099. https://doi.org/10.1016/j.sbspro.2013.10.172
Sudaryanto. (2015). Metode dan aneka teknik analisis bahasa: Pengantar wahana kebudayaan secara linguitis (1st ed., Vol. 1). Penerbit USD.
Sugiyono. (2013). Metode penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
Sunwoo Jeong. (2018). Intonation and Sentence Type Conventions:Two Types of Rising Declaratives. Journal Of Semantics. https://doi.org/10.1093/jos/ffy001
Syakur, A. (2021). Implementasi metode lexicon based untuk analisis sentimen kebijakan pemerintah dalam pencegahan penyebaran virus corona Covid-19 pada Twitter. Jurnal Ilmiah Informatika Komputer, 26(3), 247–260. https://doi.org/10.35760/ik.2021.v26i3.4720
Taylor, C. (2015). Beyond sarcasm: The metalanguage and structures of mock politeness. Journal of Pragmatics, 87, 127–141. https://doi.org/10.1016/j.pragma.2015.08.005
Thompson, D., & Filik, R. (2016). Sarcasm in Written Communication: Emoticons are Efficient Markers of Intention. Journal of Computer-Mediated Communication, 21(2), 105–120. https://doi.org/10.1111/jcc4.12156
Whalen, J. M., Doyle, A., & Pexman, P. M. (2020). Sarcasm between siblings: Children’s use of relationship information in processing ironic remarks. Journal of Pragmatics, 156, 149–159. https://doi.org/10.1016/j.pragma.2019.05.005