Acoustic systems (split beam echo sounder ) to determine abundance of fish in marine fisheries


  • Muhammad Zainuddin Lubis Department of Informatics Engineering, Geomatics Engineering Batam Polytechnic, Batam Kepulauan Riau, 29461 Indonesia
  • Henry M Manik Department of Marine Science and Technology Faculty of Fisheries and Marine Sciences Bogor Agricultural University Kampus IPB Dramaga Bogor, Indonesia
Keywords: Acoustic systems, Estimation of fish stocks, Split beam echo sounder, Simrad, Target strength


Acoustic waves are transmitted into the subsurface ocean will experience scattering (scattering) caused by marine organisms, material distributed in the ocean, the structure is not homogeneous in seawater, as well as reflections from the surface and the seabed. Estimation of fish stocks in the waters wide as in Indonesia have a lot of them are using the acoustic method. The acoustic method has high speed in predicting the size of fish stocks so as to allow acquiring data in real time, accurate and high speed so as to contribute fairly high for the provision of data and information of fishery resources.  Split beam echo sounder comprises two aspects, and a transducer. The first aspect is the high-resolution color display for displaying echogram at some observations and also serves as a controller in the operation of the echo sounder. The second aspect is transceiver consisting of transmitter and receiver. The Echosounder divided beam first inserted into the ES 3800 by SIMRAD beginning of the 1980s and in 1985 was introduced to fishermen in Japan as a tool for catching up. Split beam transducer is divided into four quadrants.  Factors that contribute affect the value of Target Strength (TS) fish Strength target can generally be influenced by three factors: a target factor itself, environmental factors, and factors acoustic instrument. Factors include the size of the target, the anatomy of fish, swim bladder, the behavior of orientation.


Download data is not yet available.


Arnaya, I.N. 1991. Akustik Kelautan II. Proyek Peningkatan Perguruan Tinggi. Institut Pertanian Bogor. Bogor.

Benoit-Bird, K. J., & Au, W. W. 2001. Target strength measurements of Hawaiian mesopelagic boundary community animals. The Journal of the Acoustical Society of America, 110(2), 812-819.

DeCino, R. D., & Willette, T. M. 2014. Susitna drainage lakes pelagic fish estimates, using split-beam hydroacoustic and midwater trawl sampling techniques, 2005–2009. Alaska Department of Fish and Game, Fishery Data Series, (14-47).

Diez, M. J., Cabreira, A. G., Madirolas, A., & Lovrich, G. A. 2016. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. Journal of Sea Research, 114, 1-12.

Effendie, M. I. 2002. Biologi Perikanan. Yayasan Pustaka Nusatama. 163 pp.

Ehrenberg E. John, 1979. A Comparative Analysis of In Situ Methods for Directly Measuring the Acoustic Target Strength of Individual Fish IEEE journal of oceanic engineering, vol. Oe-4, no. 4.

Fässler, S. M., Gorska, N., Ona, E., & Fernandes, P. G. 2008. Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fisheries Research, 92(2), 314-321.

Foote, K.G & Traynor, J.J. 1988. Comparison of walleye pollock target strength estimates determined from in situ measurements and calculations based on swimbladder form. J.Acoust.Soc.Am. 83(1).

Foote, K.G. 1987 . Introduction to the Use of Sonar System for Estimating Fish Biomass. FAO. Fisheries Technical Paper No 199 Revision 1.

Furusawa, M. 1998. Prolate Spherodial model for predicting General Trends of Fish Target Strength. J.Acoust.Soc.Am Page 13-24.

Hannachi, M. S., L. B. Abdallah, & O. Marrakchi. 2004. Acoustic Identification of Small Pelagic Fish Species: Target Strength Analysis and School Descriptor Classification. MedSudMed Technical Documents No.5.

Henderson, M. J., Horne, J. K., & Towler, R. H. 2008. The influence of beam position and swimming direction on fish target strength. ICES Journal of Marine Science: Journal du Conseil, 65(2), 226-237.

Jørgensen, R. 2003. The effects of swimbladder size, condition and gonads on the acoustic target strength of mature capelin. ICES Journal of Marine Science: Journal du Conseil, 60(5), 1056-1062.

Jurvelius, J., Marjomäki, T. J., Peltonen, H., Degtev, A., Bergstrand, E., Enderlein, O., & Auvinen, H. 2016. Fish density and target strength distribution of single fish echoes in varying light conditions with single and split beam echosounding and trawling. Hydrobiologia, 1-12.

Kaartvedt, S., Staby, A., & Aksnes, D. L. 2012. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series, 456(1), 1-6.

Love, R.H. 1997. Target Strength of an individual Fish at any aspect . J.Acoust. Soc. Am, (62) : 1397-1403.

Lubis, M. Z., & Pujiyati, S. 2016. Detection Backscatter Value of Mangrove Crab (Scylla Sp.) Using Cruzpro Fishfinder Pcff-80 Hydroacoustic Instrument. J Biosens Bioelectron, 7(205), 2.

Lubis, M. Z., & Anurogo, W. 2016. Fish stock estimation in Sikka Regency Waters, Indonesia using Single Beam Echosounder (CruzPro fish finder PcFF-80) with hydroacoustic survey method. Aceh Journal of Animal Science, 1(2).

Lurton, X. 2002. An Introduction to Underwater Acoustic. Principles and Applications. Praxis Publishing Ltd. Chincester. UK.

MacLennan, D. N dan E. J Simmonds. 1992. Fisheries Acoustic. Chapman and Hall. London.

Maclennan, D. N., Fernandes, P. G., & Dalen, J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science: Journal du Conseil, 59(2), 365-369.

Maclennan, D. N dan Simmonds, E. J. 2005. Fisheries Acoustic. Chapman and Hall. Oxford : Blackwell Science. DeCino, R. D., & Willette, T. M. 2014. Susitna drainage lakes pelagic fish estimates, using split-beamhydroacoustic and midwater trawl sampling techniques, 2005–2009. Alaska Department of Fish and Game, Fishery Data Series, (14-47).

Maisonhaute, E., Prado, C., White, P. C., & Compton, R. G. 2002. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: Shear stress in ultrasonic cleaning. Ultrasonics sonochemistry, 9(6), 297-303.

Manik, H. M., Furusawa, M., & Amakasu, K. 2006. Measurement of sea bottom surface backscattering strength by quantitative echo sounder. Fisheries Science, 72(3), 503-512.

Natsir, M., B. Sadhotomo, & Wudianto. 2005. Pendugaan biomassa ikan pelagis di perairan Teluk Tomini dengan metode akustik bim terbagi. Jurnal Penelitian Perikanan Indonesia. 11 (6): 101-107.

Priatna. A & Wijopriono. 2011. Estimasi stok sumber daya ikan dengan metode hidroakustik Di perairan abupaten bengkalis. J. Lit. Perikan. Ind. Vol.17 No. 1

Pujiyati, S., Hestirianoto, T., Wulandari, P. D., & Lubis, M. Z. 2016. Fish Stock Estimation by Using the Hydroacoustic Survey Method in Sikka Regency Waters, Indonesia. J Fisheries Livest Prod, 4(193), 2.

Pujiyati, S. 2008. Pendekatan Metode Hidroakustik untuk Analisis Keterkaitan antara Tipe Subsrat Dasar Perairan dengan Komunitas Ikan Demersal. Disertasi. Sekolah Pasca Sarjana. Institut Pertanian Bogor. Bogor.

Widodo, J. 1992. Prinsip Dasar Hidroakustik Perikanan. Oseana. XVII (3): 83-95.

Xie. J dan Jones. I. S. F. 2009. A Sounding Scattering Layer in a Freshwater Reservoir. Marine Study Center University of Sydney. Australia. 10.4319/lo.1994.39.2.0443

Yasuma, H., Sawada, K., Ohshima, T., Miyashita, K., and Aoki, I. 2003. Target strength of mesopelagic lanternfishes (family Myctophidae) based on swimbladder morphology. ICES Journal of Marine Science, 60: 584_591
Abstract viewed = 644 times
DOWNLOAD PDF downloaded = 312 times