Review : Bathymetry Mapping Using Underwater Acoustic Technology
DOI:
https://doi.org/10.25299/jgeet.2019.4.2.3127Keywords:
Bathymetry, Underwater Acoustic Technology, IHO 2008Abstract
The bathymetry mapping using underwater acoustic technology very important in Indonesia waters. Bathymetry is the result of measuring the height of the seabed so that the bathymetric map provides information about the seabed, where this information can provide benefits to several fields related to the seabed. In bathymetry mapping uses underwater acoustic technology where among them is using Single beam echosounder and MBES (Multibeam Echosounder System), and multibeam echosounder (MBES) is acoustic equipment that is intensively used frequently in basic waters mapping. The advantage of using underwater acoustic technology is the acquisition and processing of data in real time, high accuracy and precision (correction of the bathymetry data was carried out with reference to the 2008 International Hydrographic Organization (IHO), and cannot be a threat or damage to objects. Retrieval of bathymetry data must use parallel patterns, namely: patterns with perpendicular sounding directions and tend to be parallel to longitudinal lines or in accordance with parallel sounding patterns.
Downloads
References
Anderson, J. T., Van Holliday, D., Kloser, R., Reid, D. G., & Simard, Y. 2008. Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science, 65, 6, 1004-1011.
Brouwer PAI., 2008. Seafloor classification using a single beam echosounder [tesis]. Department of Earth Observation and Space System cahir of Acoustic Remote Sensing. Delf, the Netherlands. p 1.
de Moustier, C., 1988. State of the art in swath bathymetry survey systems.
Febrianto, T., Hestirianoto, T., & Agus, S. B. 2016. Pemetaan batimetri di perairan dangkal Pulau Tunda, Serang, Banten menggunakan singlebeam echosounder. Jurnal Teknologi Perikanan dan Kelautan, 62, 139-147.
International Hydrographic Organization., 2008. Standards for Hydrographic Surveys. 5th ed. Monaco FR: International Hydrographic Bureau Publishing.
Lubis, M. Z., & Anurogo, W., 2016. Fish stock estimation in Sikka Regency Waters, Indonesia using Single Beam Echosounder CruzPro fish finder PcFF-80 with hydroacoustic survey method. Aceh Journal of Animal Science, 12, 70-78.
Lubis, M. Z., & Pujiyati, S., 2016. Detection backscatter value of mangrove crab Scylla sp. using Cruzpro Fishfinder Pcff-80 hydroacoustic instrument. J. Biosens. Bioelectron, 72, 2.
Lubis, M. Z., Anurogo, W., Kausarian, H., Choanji, T., Antoni, S., & Pujiyati, S., 2018, July. Discrete EquiSpaced Unshaded Line Array method for target identification using side scan sonar imagery. In IOP Conference Series: Earth and Environmental Science Vol. 176, No. 1, p. 012025. IOP Publishing.
Lubis, M. Z., Kausarian, H., & Anurogo, W., 2017. Seabed Detection Using Application Of Image Side Scan Sonar Instrument Acoustic Signal. Journal of Geoscience, Engineering, Environment, and Technology, 23, 230-234.
Masrukhin, M. A. A., Sugianto, D. N., & Satriadi, A., 2014. Studi batimetri dan morfologi dasar laut dalam penentuan jalur peletakan pipa bawah laut Perairan Larangan-Maribaya, Kabupaten Tegal. Journal of Oceanography, 31, 94-104.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., ... & Fenty, I., 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 4421, 11-051.
Rampengan, R. M., 2009. Bathimetry in Mokupa’s Coastal Waters. J. Perikanan dan Kelautan, 53, 68-72.
Riadi, E., Zainuri, M., & Purwanto, P., 2014. Studi Kondisi Dasar Perairan Menggunakan Citra Sub-bottom Profiler Di Perairan Tarakan Kalimantan Timur. Journal of Oceanography, 31, 26-35.
Roman, C., & Singh, H., 2005. Improved vehicle based multibeam bathymetry using sub-maps and SLAM. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3662-3669. IEEE.
Snellen, M., Siemes, K., & Simons, D. G., 2011. Model-based sediment classification using single-beam echosounder signals. The Journal of the Acoustical Society of America, 1295, 2878-.
Downloads
Published
Issue
Section
License
Copyright @2019. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JGEET are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.