Spontaneous Imbibition Test of Low Salinity Injection at Low Saline Waxy Crude Carbonate

Fiki Hidayat (1), Tomi Erfando (2), Borry Frima Maulana (3)
(1) Department of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia,
(2) Department of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia,
(3) Department of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia

Abstract

Low salinity waterflooding (LSW) is categorized as one of emerging EOR technologies. It is done by injecting water with different salt composition and/or concentration. The research has been carried out for both sandstone and carbonate with the results looks promising. However, most of this research still concentrated in the north sea, middle east and North America region. This article discusses the applicability of low salinity waterflooding methodology in Indonesia. Spontaneous imbibition test is carried out to observe the recovery gain from a various combination of concentration and composition of the injected brine. The change of pH of the brine is also examined in order to confirm the pH effect mechanism. Three different concentration of brine (500 ppm, 5.000 ppm, and 10.000 ppm), three different brine composition (NaCl, CaCl2, and MgCl2) and high paraffinic crude oil are used as the fluid sample. It is found that the increased oil recovery is significant at a salinity of 10,000 ppm for MgCl2 and 5,000 ppm for NaCl ions. While the lowest recovery was shown by the test at a salinity of 500 ppm

Full text article

Generated from XML file

References

Abdurrahman, M., Permadi, A. K., Bae, W. S., & Masduki, A. (2017). EOR in Indonesia: past, present, and future. International Journal of Oil, Gas and Coal Technology, 16(3), 250–270. https://doi.org/10.1504/IJOGCT.2017.087024

Abdurrahman, Muslim, Bae, W., Permadi, A. K., Suranto, A. M., Gunadi, B., Saputra, D. D. S. M., Widyaningsih, R., & Gunadi, T. A. (2013, October 22). Opportunities and Challenges of CO2 Flooding Implementation in Indonesia. SPE Asia Pacific Oil and Gas Conference and Exhibition. https://doi.org/10.2118/165847-MS

Aksulu, H., Håmsø, D., Strand, S., Puntervold, T., & Austad, T. (2012). Evaluation of Low-Salinity Enhanced Oil Recovery Effects in Sandstone: Effects of the Temperature and pH Gradient. Energy & Fuels, 26(6), 3497-3503. https://doi.org/10.1021/ef300162n

Al-adasani, A., Bai, B., & Wu, Y. (2012). Investigating Low-Salinity Waterflooding Recovery Mechanisms in Sandstone Reservoirs. SPE Improved Oil Recovery Symposium, 1–28. https://doi.org/10.2118/152997-MS

Al-yaari, M., & Fahd, K. (2011). Paraffin Wax Deposition : Mitigation & Removal Techniques. SPE Saudi Arabia Technical Symposium, March, 10. https://doi.org/10.2118/155412-MS

Austad, T., Rezaeidoust, A., & Puntervold, T. (2010, April 4). Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs. SPE Improved Oil Recovery Symposium. https://doi.org/10.2118/129767-MS

Fattahi, A. (2014). Low Salinity Waterflooding in sandstone-A Review. International Journal of Petroleum Geoscience Engineering, 2(4), 315-341.

Ferizal, F. H., Netzhanova, A. A., Lee, J., Bae, W., Suranto, A. M., & Gunadi, T. A. (2013, June 11). Revitalizing Indonesia’s Potential for Oil Production: The Study of Electromagnetically Heated Gravel Packs for Steam-produced Heavy Oil Reservoirs. SPE Heavy Oil Conference-Canada. https://doi.org/10.2118/165508-MS

Hamouda, A. A., & Gupta, S. (2017). Enhancing Oil Recovery from Chalk Reservoirs by a Low-Salinity Water Flooding Mechanism and Fluid/Rock Interactions. Energies, 10(4), 576. https://doi.org/10.3390/en10040576

Hidayat, F., & Abdurrahman, M. (2018). A Prospective Method to Increase Oil Recovery in Waxy-Shallow Reservoir. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012040

Kokal, S., & Al-kaabi, A. (2010). Enhanced oil recovery: challenges & opportunities. World Petroleum Council, 64–69.

Mahani, H., Keya, A. L., Berg, S., Bartels, W. B., Nasralla, R., & Rossen, W. (2015). Driving Mechanism of Low Salinity Flooding in Carbonate Rocks. EUROPEC 2015, 210–236. https://doi.org/10.2118/174300-ms

Morrow, N., & Buckley, J. (2011). Improved Oil Recovery by Low-Salinity Waterflooding. Journal of Petroleum Technology, 63(05), 106–112. https://doi.org/10.2118/129421-jpt

Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T., & Salino, P. (2014). Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 372(2006). https://doi.org/10.1098/rsta.2012.0320

Putra, D. F., & Temizel, C. (2018). The Optimization and Analysis of Hydrocarbon Recovery under Injection of Biopolymer, Synthetic Polymer and Gels in a Heterogeneous Reservoir. Journal of Earth Energy Engineering, 7(1), 19–41. https://doi.org/10.25299/jeee.2018.vol7(1).1301

Romero, M. I., Gamage, P., Jiang, H., Chopping, C., & Thyne, G. (2013). Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores. Journal of Petroleum Science and Engineering, 110, 149–154. https://doi.org/10.1016/j.petrol.2013.08.050

Sheng, J. J. (2014). Critical review of low-salinity waterflooding. Journal of Petroleum Science and Engineering, 120, 216–224. https://doi.org/10.1016/j.petrol.2014.05.026

Tang, G. Q., & Morrow, N. R. (1997). Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engineering, 12(November), 269–276. https://doi.org/10.2118/36680-PA

Wickramathilaka, S., Morrow, N., & Howard, J. (2010, October 4). Effect of Salinity on Oil Recovery by Spontaneous Imbibition. International Symposium of the Society of Core Analysts.

Yousef, A. A., Al-Saleh, S., & Al-Jawfi, M. (2011). Smart WaterFlooding for Carbonate Reservoirs: Salinity and Role of Ions. SPE Middle East Oil and Gas Show and Conference, 1, 632–642. https://doi.org/10.2118/141082-ms

Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. (2011). Laboratory Investigation of the Impact of Injection-Water Salinity and Ionic Content on Oil Recovery from Carbonate Reservoirs. SPE Reservoir Evaluation and Engineering, 14(5), 578–593. https://doi.org/10.2118/137634-PA

Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO4 2-. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1–3), 199–208. https://doi.org/10.1016/j.colsurfa.2006.12.058

Zhou, X.-M., Torsaeter, O., Xie, X., & Morrow, N. R. (1995). The Effect of Crude-Oil Aging Time and Temperature on the Rate of Water Imbibition and Long-Term Recovery by Imbibition. SPE Formation Evaluation, 10(4), 259–265. https://doi.org/10.2118/26674-PA

Authors

Fiki Hidayat
fikihidayat@eng.uir.ac.id (Primary Contact)
Tomi Erfando
Borry Frima Maulana
Hidayat, F., Erfando, T., & Maulana, B. F. (2018). Spontaneous Imbibition Test of Low Salinity Injection at Low Saline Waxy Crude Carbonate. Journal of Earth Energy Engineering, 7(2), 14–22. https://doi.org/10.25299/jeee.2018.vol7(2).2215

Article Details

Received 2018-10-08
Accepted 2018-10-21
Published 2018-10-31

Most read articles by the same author(s)