Application of Pineapple Skin Waste as a Source of Biosolvent for Use as Wax Inhibitor

Muhammad Khairul Afdhol (1), Tomi Erfando (2), Fiki Hidayat (3), Rosdanelli Hasibuan (4), M Yudatama Hasibuan (5), Chalidah Pratiwi Siregar (6)
(1) Department of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia,
(2) Universitas Islam Riau, Indonesia,
(3) Department of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia,
(4) Department of Chemical Engineering, Universitas Sumatera Utara, Indonesia, Indonesia,
(5) Dept. of Petroleum Engineering, Universitas Islam Riau, Indonesia, Indonesia,
(6) Universitas Islam Riau, Indonesia

Abstract

Wax paraffin deposition is a problem faced in the pipeline for petroleum industries that they blockage the partial or full inside the pipe, which will decrease the production rate. One of the treatments is to use the preventive methods called wax inhibitors which are expected to inhibit the crystallization of paraffin wax, and bio-solvent is included. Hydrolysis and fermentation technique are used to produced bio-solvent. Hydrolysis aims to break lignin and hemicellulose, damage the crystal structure, and increase the porosity of the material. At the same time, the occurrence of pentose changes and some glucose into ethanol is present in the fermentation process. Then, purified by the distillation process to obtain bio solvent products that are applied with waxy crude oil can reduce the pour point value of crude oil. From the hydrolysis process with five variations of acid percentage, the amount of reducing sugars increase. By increasing temperature from 50 ° C to 100 ° C, the reducing sugars continues to increase until it reaches the optimal point of 18.2 ° Brix. The amount of inoculant also affects the level of bio-solvent where the optimum results using inoculants are 0.015 g/mL, which produces 6% levels of bioethanol. The high ethanol content of 2% had a density value of 0.979 g/mL. The best °API at 5% is 13.901, and the average value is about 13.0945, where the best viscosity values for ethanol content of 6% are 0.814. Bioethanol testing using waxy crude oil is carried out with the bioethanol content of 6%. The addition of the ethanol contents only decreased the pour point 2-3℃. At sample, #LGK19 experienced a 3°C drop in pour point from 45°C to 42°C. Therefore, it can be concluded that bioethanol used as a solvent can potentially inhibit paraffin deposition.

Full text article

Generated from XML file

References

Abdurrahman, M., Ferizal, F. H., Husna, U. Z., & Pangaribuan, L. (2018). Possibility of wax control techniques in Indonesian oil fields. AIP Conference Proceedings, 1941. https://doi.org/10.1063/1.5028059 DOI: https://doi.org/10.1063/1.5028059

Afdhol, M. K., Abdurrahman, M., Hidayat, F., Chong, F. K., & Mohd Zaid, H. F. (2019). Review of Solvents Based on Biomass for Mitigation of Wax Paraffin in Indonesian Oilfield. Applied Sciences, 9(24), 5499. https://doi.org/10.3390/app9245499 DOI: https://doi.org/10.3390/app9245499

Afdhol, M. K., Hidayat, F., Abdurrahman, M., Husna, U. Z., Sari, N. P., & Wijaya, R. K. (2020). A Laboratory Scale Synthesis of Ethanol from Agricultural Waste as Bio-based Solvent for Waxy-Paraffinic Crude Oil Mitigation. IOP Conference Series: Materials Science and Engineering, 854(1), 012017. https://doi.org/10.1088/1757-899X/854/1/012017 DOI: https://doi.org/10.1088/1757-899X/854/1/012017

Afdhol, M. K., Hidayat, F., Abdurrahman, M., Lubis, H. Z., Wijaya, R. K., & Sari, N. P. (2019). Utilization of Agricultural Waste to Be Bioethanol Sources as a Solvent on Paraffin Wax Crude Oil Issues. Proceedings of the Second International Conference on Science, Engineering and Technology, 315–321. https://doi.org/10.5220/0009366903150321 DOI: https://doi.org/10.5220/0009366903150321

Afdhol, M. K., Lubis, H. Z., & Siregar, C. P. (2019). Bioethanol Production from Tea Waste as a Basic Ingredient in Renewable Energy Sources. Journal of Earth Energy Engineering, 8(1), 21. https://doi.org/10.25299/jeee.2019.vol8(1).2602 DOI: https://doi.org/10.25299/jeee.2019.vol8(1).2602

Al-Yaari, M. (2011). Paraffin Wax Deposition: Mitigation & Removal Techniques. SPE Saudi Arabia Section Young Professionals Technical Symposium, 14-16 March. https://doi.org/10.2118/155412-MS DOI: https://doi.org/10.2118/155412-MS

Ardiansyah, F., Erfando, T., Efriza, I., Rahmatan, B., & Oktavia, C. (2019). Evaluation of Heavy Paraffin Solvent Injection in Langgak Oil Field. IOP Conference Series: Materials Science and Engineering, 536(1), 12008. DOI: https://doi.org/10.1088/1757-899X/536/1/012008

Bello, O., Fasesan, S., Teodoriu, C., & Reinicke, K. (2006). An evaluation of the performance of selected wax inhibitors on paraffin deposition of Nigerian crude oils. Petroleum Science and Technology, 24(2), 195–206. https://doi.org/10.1081/LFT-200044504 DOI: https://doi.org/10.1081/LFT-200044504

Bhandari, S. V, Panchapakesan, A., Shankar, N., & Kumar, H. G. A. (2013). Production of bioethanol from fruit rinds by saccharification and fermentation. Int. J. Sci. Res. Eng. Technol, 2(6), 362–365.

Conesa, C., Seguí, L., Laguarda-Miró, N., & Fito, P. (2016). Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and Bioproducts Processing, 100, 203–213. DOI: https://doi.org/10.1016/j.fbp.2016.07.001

Halim, N., Ali, S., Nadeem, M. N., Abdul Hamid, P., & Tan, I. M. (2011). Synthesis of Wax Inhibitor and Assessment of Squeeze Technique Application for Malaysian Waxy Crude. SPE Asia Pacific Oil and Gas Conference and Exhibition, 15. https://doi.org/10.2118/142288-MS DOI: https://doi.org/10.2118/142288-MS

Hidayat, F., & Abdurrahman, M. (2018). A Prospective Method to Increase Oil Recovery in Waxy-Shallow Reservoir. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012040 DOI: https://doi.org/10.1088/1757-899X/306/1/012040

Khaibullina, K. (2016). Technology to Remove Asphaltene, Resin and Paraffin Deposits in Wells Using Organic Solvents. SPE Annual Technical Conference and Exhibition, 6. https://doi.org/10.2118/184502-STU DOI: https://doi.org/10.2118/184502-STU

Osvaldo, Z. S., Putra, P., & Faizal, M. (2012). Pengaruh konsentrasi asam dan waktu pada proses hidrolisis dan fermentasi pembuatan bioetanol dari alang-alang. Jurnal Teknik Kimia, 18(2).

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7 DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. https://doi.org/https://doi.org/10.1016/j.biortech.2009.11.080 DOI: https://doi.org/10.1016/j.biortech.2009.11.080

Taraneh, J. B., Rahmatollah, G., Hassan, A., & Alireza, D. (2008). Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Processing Technology, 89(10), 973–977. https://doi.org/10.1016/j.fuproc.2008.03.013 DOI: https://doi.org/10.1016/j.fuproc.2008.03.013

Thangavelu, S. K., Rajkumar, T., Pandi, D. K., Ahmed, A. S., & Ani, F. N. (2019). Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Management, 86, 80–86. https://doi.org/https://doi.org/10.1016/j.wasman.2019.01.035 DOI: https://doi.org/10.1016/j.wasman.2019.01.035

Winarni, I., & Maulidina, R. (2018). Bioethanol Production from Bamboo Pulp using Enzymatic Sacharificationwith Several Concentration of Surfactant. IOP Conference Series: Earth and Environmental Science, 209(1), 12051. DOI: https://doi.org/10.1088/1755-1315/209/1/012051

Yang, F., Zhao, Y., Sjöblom, J., Li, C., & Paso, K. G. (2015). Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review. Journal of Dispersion Science and Technology, 36(2), 213–225. DOI: https://doi.org/10.1080/01932691.2014.901917

Yuan, F., Wang, L., Guo, Z., & Shi, R. (2012). A refined analytical model for landslide or debris flow impact on pipelines. Part I: Surface pipelines. Applied Ocean Research, 35, 95–104. https://doi.org/10.1016/j.apor.2011.12.001 DOI: https://doi.org/10.1016/j.apor.2011.12.001

Yuliusman, Afdhol, M. K., & Sanal, A. (2018). Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012016 DOI: https://doi.org/10.1088/1757-899X/316/1/012016

Yuliusman, Afdhol, M. K., Sanal, A., & Nasruddin. (2018). CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012015 DOI: https://doi.org/10.1088/1757-899X/316/1/012015

Yuliusman, Nasruddin, Afdhol, M. K., Amiliana, R. A., & Hanafi, A. (2017). Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent. IOP Conference Series: Earth and Environmental Science, 75(1). https://doi.org/10.1088/1755-1315/75/1/012009 DOI: https://doi.org/10.1088/1755-1315/75/1/012009

Yuliusman, Nasruddin, Afdhol, M. K., Haris, F., Amiliana, R. A., Hanafi, A., & Ramadhan, I. T. (2017). Production of activated carbon from coffee grounds using chemical and physical activation method. Advanced Science Letters, 23(6), 5751–5755. https://doi.org/10.1166/asl.2017.8822 DOI: https://doi.org/10.1166/asl.2017.8822

Authors

Muhammad Khairul Afdhol
afdhol@eng.uir.ac.id (Primary Contact)
Tomi Erfando
Fiki Hidayat
Rosdanelli Hasibuan
M Yudatama Hasibuan
Chalidah Pratiwi Siregar
Afdhol, M. K., Erfando, T., Hidayat, F., Hasibuan, R., Hasibuan, M. Y., & Siregar, C. P. (2020). Application of Pineapple Skin Waste as a Source of Biosolvent for Use as Wax Inhibitor. Journal of Earth Energy Engineering, 9(2), 102–111. https://doi.org/10.25299/jeee.2020.3922

Article Details

Received 2019-10-14
Accepted 2020-09-26
Published 2020-10-20

Most read articles by the same author(s)