The Prospect of Electrical Enhanced Oil Recovery for Heavy Oil: A Review
Abstract
This paper presents a review of electrical heating for the recovery of heavy oil which the work adopts methods used in the past and the prospects for crude oil recovery in the future. Heavy oil is one of the crude oils with API more than 22 which has the potential to overcome the current light oil crisis. However, high viscosity and density are challenges in heavy oil recovery. The method is often used to overcome these challenges by using thermal injection methods, but this method results in economic and environmental issues. The electrical heating method could be a solution to replace conventional thermal methods in which the methodology of electrical heating is to transfer heat into the reservoir due to increasing oil mobility. Because the temperature rises, it could help to reduce oil viscosity, then heavy oil will flow easily. The applications of electrical heating have been adopted in this paper where the prospects of electrical heating are carried out to be useful as guidelines of electrical heating. The challenge of electrical heating is the excessive heat will damage the formation that must be addressed in the prospect of electrical heating which must meet energy efficiency. The use of Artificial intelligence becomes a new technology to overcome problems that are often found in conventional thermal methods where this method could avoid steam breakthrough and excessive heat. Therefore, it becomes more efficient and could reduce costs.
Full text article
References
Abdulfatah, H. K. (2018). Application of Ultrasonic Waves in Enhancing Oil Recovery in Secondary Recovery Phase. SPE Annual Technical Conference and Exhibition. DOI: https://doi.org/10.2118/194031-STU
Abdurrahman, M., Ferizal, F. H., Husna, U. Z., & Pangaribuan, L. (2018). Possibility of wax control techniques in Indonesian oil fields. AIP Conference Proceedings, 1941. https://doi.org/10.1063/1.5028059 DOI: https://doi.org/10.1063/1.5028059
Abechi, S. E., Gimba, C. E., Uzairu, A., & Dallatu, Y. A. (2013). Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Research Journal of Chemical Sciences, 3(7), 54–61.
Abraham, T., Afacan, A., & Thundat, T. (2016). Electrical Heating Strategies for Oil Sands Based on Their Dynamic Electrical Behavior. World Heavy Oil Congress.
Abramov, V. O., Mullakaev, M. S., Abramova, A. V, Esipov, I. B., & Mason, T. J. (2013). Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention. Ultrasonics Sonochemistry, 20(5), 1289–1295. DOI: https://doi.org/10.1016/j.ultsonch.2013.03.004
Ado, M. R., Greaves, M., & Rigby, S. P. (2018). Effect of pre-ignition heating cycle method, air injection flux, and reservoir viscosity on the THAI heavy oil recovery process. Journal of Petroleum Science and Engineering, 166, 94–103.
Afdhol, M. K., Abdurrahman, M., Hidayat, F., Chong, F. K., & Mohd Zaid, H. F. (2019). Review of Solvents Based on Biomass for Mitigation of Wax Paraffin in Indonesian Oilfield. Applied Sciences, 9(24), 5499. https://doi.org/10.3390/app9245499 DOI: https://doi.org/10.3390/app9245499
Afdhol, M. K., Hidayat, F., Abdurrahman, M., Husna, U. Z., Sari, N. P., & Wijaya, R. K. (2020). A Laboratory Scale Synthesis of Ethanol from Agricultural Waste as Bio-based Solvent for Waxy-Paraffinic Crude Oil Mitigation. IOP Conference Series: Materials Science and Engineering, 854(1), 012017. https://doi.org/10.1088/1757-899X/854/1/012017 DOI: https://doi.org/10.1088/1757-899X/854/1/012017
Afdhol, M. K., Lubis, H. Z., & Siregar, C. P. (2019). Bioethanol Production from Tea Waste as a Basic Ingredient in Renewable Energy Sources. Journal of Earth Energy Engineering, 8(1), 21. https://doi.org/10.25299/jeee.2019.vol8(1).2602 DOI: https://doi.org/10.25299/jeee.2019.vol8(1).2602
Ali, S. M. (1982). Steam Injection Theories-A Unified Approach. SPE California Regional Meeting. DOI: https://doi.org/10.2118/10746-MS
Ali, S. M., & Bayestehparvin, B. (2018). Electrical Heating—Doing the Same Thing Over and Over Again…. SPE Canada Heavy Oil Technical Conference. DOI: https://doi.org/10.2118/189724-MS
Alvarado, V., & Manrique, E. (2010). Enhanced oil recovery: an update review. Energies, 3(9), 1529–1575. DOI: https://doi.org/10.3390/en3091529
Andarcia, L., Bermudez, J. M., Reyes, Y., Caycedo, H., & Suarez, A. F. (2014). Potential of Steam Solvent Hybrid Processes in Llanos Basin, Colombia. In SPE Heavy and Extra Heavy Oil Conference: Latin America (p. 16). Society of Petroleum Engineers. https://doi.org/10.2118/171049-MS DOI: https://doi.org/10.2118/171049-MS
Bao, Y., Wang, J., & Gates, I. D. (2017). Steam injection gravity drainage as a follow-up process for cyclic steam stimulation. Journal of Petroleum Science and Engineering, 153, 268–282. https://doi.org/https://doi.org/10.1016/j.petrol.2017.04.002 DOI: https://doi.org/10.1016/j.petrol.2017.04.002
Basfar, S., Baarimah, S. O., Elkatany, S., AL-Ameri, W., Zidan, K., & AL-dogail, A. (2018). Using Artificial Intelligence to Predict IPR for Vertical Oil Well in Solution Gas Derive Reservoirs: A New Approach. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. DOI: https://doi.org/10.2118/192203-MS
Batycky, J. P., Leaute, R. P., & Dawe, B. A. (1997). A Mechanistic Model of Cyclic Steam Stimulation. In International Thermal Operations and Heavy Oil Symposium (p. 14). Society of Petroleum Engineers. https://doi.org/10.2118/37550-MS DOI: https://doi.org/10.2118/37550-MS
Bera, A., & Babadagli, T. (2015). Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Applied Energy, 151, 206–226. https://doi.org/10.1016/j.apenergy.2015.04.031 DOI: https://doi.org/10.1016/j.apenergy.2015.04.031
Bera, A., & Babadagli, T. (2017). Effect of native and injected nano-particles on the efficiency of heavy oil recovery by radio frequency electromagnetic heating. Journal of Petroleum Science and Engineering, 153, 244–256. https://doi.org/10.1016/j.petrol.2017.03.051 DOI: https://doi.org/10.1016/j.petrol.2017.03.051
Bientinesi, M., Petarca, L., Cerutti, A., Bandinelli, M., Simoni, M. De, Manotti, M., & Maddinelli, G. (2013). Journal of Petroleum Science and Engineering A radiofrequency / microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design. Journal of Petroleum Science and Engineering, 1–13. https://doi.org/10.1016/j.petrol.2013.02.014 DOI: https://doi.org/10.1016/j.petrol.2013.02.014
Bjorndalen, N., & Islam, M. R. (2004). The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well. Journal of Petroleum Science and Engineering, 43(3–4), 139–150. DOI: https://doi.org/10.1016/j.petrol.2004.01.006
Bogdanov, I., Cambon, S., & Prinet, C. (2014). Analysis of Heavy Oil Production by Radio-Frequency Heating. In SPE International Heavy Oil Conference and Exhibition (p. 13). Society of Petroleum Engineers. https://doi.org/10.2118/172862-MS DOI: https://doi.org/10.2118/172862-MS
Carlson, M. (2003). SAGD and Geomechanics. Journal of Canadian Petroleum Technology, 42(06). DOI: https://doi.org/10.2118/03-06-DAS
Cerutti, A., Bandinelli, M., Bientinesi, M., Petarca, L., Simoni, M., Manotti, M., & Maddinelli, G. (2013). A New Technique for Heavy Oil Recovery Based on Electromagnetic Heating: System Design and Numerical Modelling. Chemical Engineering Transactions, 32, 1255. https://doi.org/10.3303/CET1332210
Chandra, S., Winarto, H., & Rachmat, S. (2019). Mathematical model to predict unsteady-state heat transfer mechanism and economic feasibility in nanoparticle-assisted electromagnetic heating stimulation technique for bituminous extra-heavy oil reservoir. Journal of Petroleum Exploration and Production Technology, 9(2), 1255–1261. DOI: https://doi.org/10.1007/s13202-018-0570-0
Chen, J.-H., Georgi, D. T., & Liu, H.-H. (2018). Electromagnetic thermal stimulation of shale reservoirs for petroleum production. Journal of Natural Gas Science and Engineering, 59, 183–192. DOI: https://doi.org/10.1016/j.jngse.2018.08.029
Chhetri, A. B., & Islam, M. R. (2008). A critical review of electromagnetic heating for enhanced oil recovery. Petroleum Science and Technology, 26(14), 1619–1631. DOI: https://doi.org/10.1080/10916460701287607
Dandjouma, A. K. A., Tchiégang, C., Kapseu, C., Fanni, J., & Parmentier, M. (2006). Changes in Canarium schweinfurthii Engl. oil quality during microwave heating. European Journal of Lipid Science and Technology, 108(5), 429–433. DOI: https://doi.org/10.1002/ejlt.200500269
Das, S. K. (2007). Application of thermal processes in heavy oil carbonate reservoirs. In SPE Middle East Oil and Gas Show and Conference (p. 9). Society of Petroleum Engineers. https://doi.org/10.2118/105392-MS DOI: https://doi.org/10.2118/105392-MS
Das, S. K. (2008). Electro magnetic heating in viscous oil reservoir. International Thermal Operations and Heavy Oil Symposium. DOI: https://doi.org/10.2118/117693-MS
Davison, R. J. (1995). Electromagnetic stimulation of Lloydminster heavy oil reservoirs: field test results. Journal of Canadian Petroleum Technology, 34(04). DOI: https://doi.org/10.2118/95-04-01
Davletbaev, A., Kovaleva, L., & Babadagli, T. (2011). Mathematical modeling and field application of heavy oil recovery by radio-frequency electromagnetic stimulation. Journal of Petroleum Science and Engineering, 78(3–4), 646–653. DOI: https://doi.org/10.1016/j.petrol.2011.07.006
Davletbaev, A., Kovaleva, L., Babadagli, T., & Minnigalimov, R. (2010). Heavy oil and bitumen recovery using radiofrequency electromagnetic irradiation and electrical heating: Theoretical analysis and field scale observations. Canadian Unconventional Resources and International Petroleum Conference. DOI: https://doi.org/10.2118/136611-MS
Demiral, B., Akin, S., Acar, C., & Hascakir, B. (2008). Microwave Assisted Gravity Drainage of Heavy Oils. In International Petroleum Technology Conference (p. 9). International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-12536-MS DOI: https://doi.org/10.2523/IPTC-12536-MS
Derman, E., Abdulla, R., Marbawi, H., & Sabullah, M. K. (2018). Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia. Renewable Energy, 129, 285–298. https://doi.org/10.1016/j.renene.2018.06.003 DOI: https://doi.org/10.1016/j.renene.2018.06.003
Dietz, D. N. (1975). Review of thermal recovery methods. Fall Meeting of the Society of Petroleum Engineers of AIME. DOI: https://doi.org/10.2118/5558-MS
Doraiah, A., Ray, S., & Gupta, P. (2007). In-situ combustion technique to enhance heavy oil recovery at Mehsana. ONGC-a Success Story SPE, 105248.
Faradonbeh, M. R., Hassanzadeh, H., & Harding, T. (2016). Numerical simulations of bitumen recovery using solvent and water assisted electrical heating. Fuel, 186, 68–81. DOI: https://doi.org/10.1016/j.fuel.2016.08.077
Ferizal, F. H., Netzhanova, A. A., Lee, J., Bae, W., Suranto, A. M., & Gunadi, T. A. (2013, June 11). Revitalizing Indonesia’s Potential for Oil Production: The Study of Electromagnetically Heated Gravel Packs for Steam-produced Heavy Oil Reservoirs. SPE Heavy Oil Conference-Canada. https://doi.org/10.2118/165508-MS DOI: https://doi.org/10.2118/165508-MS
Ferri, R. P., & Uthe, M. T. (2001). Hydrocarbon remediation using microwaves. SPE/EPA/DOE Exploration and Production Environmental Conference. DOI: https://doi.org/10.2118/66519-MS
Gates, I. D., & Larter, S. R. (2014). Energy efficiency and emissions intensity of SAGD. Fuel, 115, 706–713. DOI: https://doi.org/10.1016/j.fuel.2013.07.073
Ghoodjani, E., Kharrat, R., Vossoughi, M., & Bolouri, S. H. (2012). A review on thermal enhanced heavy oil recovery from fractured carbonate reservoirs. SPE Heavy Oil Conference Canada. DOI: https://doi.org/10.2118/150147-MS
Giacchetta, G., Leporini, M., & Marchetti, B. (2015). Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands. Applied Energy, 142, 1–9. DOI: https://doi.org/10.1016/j.apenergy.2014.12.057
Greff, J., & Babadagli, T. (2013). Use of nano-metal particles as catalyst under electromagnetic heating for in-situ heavy oil recovery. Journal of Petroleum Science and Engineering, 112, 258–265. https://doi.org/10.1016/j.petrol.2013.11.012 DOI: https://doi.org/10.1016/j.petrol.2013.11.012
Guo, W., Wang, Z., Sun, Z., Sun, Y., Lü, X., Deng, S., Qu, L., Yuan, W., & Li, Q. (2019). Experimental investigation on performance of downhole electric heaters with continuous helical baffles used in oil shale in-situ pyrolysis. Applied Thermal Engineering, 147, 1024–1035. DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.013
Hakiki, F., Aditya, A., Ulitha, D. T., Shidqi, M., Adi, W. S., Wibowo, K. H., & Barus, M. (2017, October 17). Well and Inflow Performance Relationship for Heavy Oil Reservoir under Heating Treatment. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. https://doi.org/10.2118/186187-ms DOI: https://doi.org/10.2118/186187-MS
Hanyong, L., Kexin, C., Ling, J., Leilei, W., & Bo, Y. (2018). Experimental study on the viscosity reduction of heavy oil with nano-catalyst by microwave heating under low reaction temperature. Journal of Petroleum Science and Engineering, 170, 374–382. DOI: https://doi.org/10.1016/j.petrol.2018.06.078
Hascakir, B., Babadagli, T., & Akin, S. (2008). Experimental and Numerical Modeling of Heavy-Oil Recovery by Electrical Heating. 11, 3976–3985. https://doi.org/10.2118/117669-ms DOI: https://doi.org/10.2118/117669-MS
Hascakir, B., Babadagli, T., & Akin, S. (2010). Field-scale analysis of heavy-oil recovery by electrical heating. SPE Reservoir Evaluation & Engineering, 13(1), PP-131. DOI: https://doi.org/10.2118/117669-PA
Hassanzadeh, H., Harding, T. G., Moore, R. G., Mehta, S. A., & Ursenbach, M. G. (2016). Gas generation during electrical heating of oil sands. Energy & Fuels, 30(9), 7001–7013. DOI: https://doi.org/10.1021/acs.energyfuels.6b01227
Hassanzadeh, H., Rabiei Faradonbeh, M., & Harding, T. (2017). Numerical simulation of solvent and water assisted electrical heating of oil sands including aquathermolysis and thermal cracking reactions. AIChE Journal, 63(9), 4243–4258. DOI: https://doi.org/10.1002/aic.15774
Hidayat, F., & Abdurrahman, M. (2018). A Prospective Method to Increase Oil Recovery in Waxy-Shallow Reservoir. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012040 DOI: https://doi.org/10.1088/1757-899X/306/1/012040
Hill, D. (2014). Application of Electrokinetics for Enhanced Oil Recovery. Electrokinetics for Petroleum and Environmental Engineers, 103–155. DOI: https://doi.org/10.1002/9781118842805.ch3
Hu, L., Li, H. A., Babadagli, T., & Ahmadloo, M. (2017). Experimental investigation of combined electromagnetic heating and solvent-assisted gravity drainage for heavy oil recovery. Journal of Petroleum Science and Engineering, 154, 589–601. https://doi.org/10.1016/j.petrol.2016.10.001 DOI: https://doi.org/10.1016/j.petrol.2016.10.001
Ibrahim, H., Sebayang, A. H., Dharma, S., & Silitonga, A. S. (2017). Prediksi kinerja mesin diesel dengan bahan bakar biodiesel-solar menggunakan artificial neural network. Jurnal Muara Sains, Teknologi, Kedokteran Dan Ilmu Kesehatan, 1(1), 48–58. DOI: https://doi.org/10.24912/jmstkik.v1i1.391
Isaacs, E. (2011). Advances in Extra Heavy Oil Development Technologies (Isaacs). 20th World Petroleum Congress.
Ji, D., Yang, S., Zhong, H., Dong, M., Chen, Z., & Zhong, L. (2016). Re-Examination of Fingering in SAGD and ES-SAGD. SPE Canada Heavy Oil Technical Conference. DOI: https://doi.org/10.2118/180708-MS
Kandziora, C. (2019). Applying Artificial Intelligence to Optimize Oil and Gas Production. Offshore Technology Conference. DOI: https://doi.org/10.4043/29384-MS
Kasevich, R. S., Price, S. L., & Albertson, A. (1997). Numerical Modeling of Radio Frequency Heating Process for Enhanced Oil Production. In SPE Western Regional Meeting (p. 5). Society of Petroleum Engineers. https://doi.org/10.2118/38311-MS DOI: https://doi.org/10.2118/38311-MS
Koolman, M., Huber, N., Diehl, D., & Wacker, B. (2008). Electromagnetic heating method to improve steam assisted gravity drainage. International Thermal Operations and Heavy Oil Symposium. DOI: https://doi.org/10.2118/117481-MS
Kusumastuti, I., Erfando, T., & Hidayat, F. (2019). Effects of Various Steam Flooding Injection Patterns and Steam Quality to Recovery Factor. Journal of Earth Energy Engineering, 8(1), 33–39. https://doi.org/10.25299/jeee.2019.vol8(1).2909 DOI: https://doi.org/10.25299/jeee.2019.vol8(1).2909
Madhavan, R. M., & Mamora, D. D. (2010). Experimental investigation of caustic steam injection for heavy oils. SPE Improved Oil Recovery Symposium. DOI: https://doi.org/10.2118/129086-MS
Marfissi, S., Campos, F., Osuna, C., & Brown, J. (2009). EVALUATION OF DOWNHOLE ELECTRICAL HEATING IN HEAVY OIL OF THE ORINOCO BELT, VENEZUELA.
Martin, E. J., Mumford, K. G., Kueper, B. H., & Siemens, G. A. (2017). Gas formation in sand and clay during electrical resistance heating. International Journal of Heat and Mass Transfer, 110, 855–862. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.056
McGee, B C W, Vermeulen, F. E., & Yu, C. L. (1996). Electrical Heating With Horizontal And Vertical Wells. Annual Technical Meeting. DOI: https://doi.org/10.2118/96-98
McGee, B C W, Vermeulen, F. E., & Yu, L. (1999). Field test of electrical heating with horizontal and vertical wells. Journal of Canadian Petroleum Technology, 38(03). DOI: https://doi.org/10.2118/99-03-04
McGee, Bruce C W, & Vermeulen, F. E. (2007). The mechanisms of electrical heating for the recovery of bitumen from oil sands. Journal of Canadian Petroleum Technology, 46(01). DOI: https://doi.org/10.2118/07-01-03
Melcon, S. (1965). Oil recovery by in situ combustion. Google Patents.
Melysa, R. (2016). Prediksi Kinerja Steamflood Dengan Metode Myhill-Stegemeier dan Gomaa di Area R Duri Steamflood (DSF). Journal of Earth Energy Engineering, 5(2), 44–56. https://doi.org/10.22549/jeee.v5i2.478 DOI: https://doi.org/10.22549/jeee.v5i2.478
Mozafari, M., & Nasri, Z. (2017). Operational conditions effects on Iranian heavy oil upgrading using microwave irradiation. Journal of Petroleum Science and Engineering, 151, 40–48. https://doi.org/https://doi.org/10.1016/j.petrol.2017.01.028 DOI: https://doi.org/10.1016/j.petrol.2017.01.028
Nasr, T N, Law, D. H. S., Golbeck, H., & Korpany, G. (2000). Counter-current Aspect of the SAGD Process. Journal of Canadian Petroleum Technology, 39(01), 7. https://doi.org/10.2118/00-01-03 DOI: https://doi.org/10.2118/00-01-03
Nasr, Tawfik Noaman, & Ayodele, O. R. (2005). Thermal techniques for the recovery of heavy oil and bitumen. SPE International Improved Oil Recovery Conference in Asia Pacific. DOI: https://doi.org/10.2118/97488-MS
Nasri, Z., & Mozafari, M. (2018). Multivariable statistical analysis and optimization of Iranian heavy crude oil upgrading using microwave technology by response surface methodology (RSM). Journal of Petroleum Science and Engineering, 161, 427–444. DOI: https://doi.org/10.1016/j.petrol.2017.12.004
Olawoyin, A., & Chen, Y. (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science, 140, 383–392. DOI: https://doi.org/10.1016/j.procs.2018.10.300
Oloumi, D., & Rambabu, K. (2016). Microwave heating of heavy oil reservoirs: A critical analysis. Microwave and Optical Technology Letters, 58(4), 809–813. DOI: https://doi.org/10.1002/mop.29670
Onyekonwu, M. O., Pande, K., Ramey Jr, H. J., & Brigham, W. E. (1986). Experimental and simulation studies of laboratory in-situ combustion recovery. SPE California Regional Meeting. DOI: https://doi.org/10.2118/15090-MS
Pizarro, J. O. S., & Trevisan, O. V. (1990). Electrical heating of oil reservoirs: numerical simulation and field test results. Journal of Petroleum Technology, 42(10), 1–320. DOI: https://doi.org/10.2118/19685-PA
Putra, E. A. P., Rachman, Y. A., Arsyadanie, R., Hafizh, G., & Firmanto, T. (2011). Case Study : Cyclic Steam Stimulation in Sihapas Formation. SPE Asia Pacific Oil and Gas Conference and Exhibition, 1–10. https://doi.org/SPE-147811 DOI: https://doi.org/10.2118/147811-MS
Rafiee, M., Behr, A., Lessner, E., Diehl, D., Trautmann, B., & Koch, A. (2015). Electromagnetic heating for heavy oil production: Case study of a field applicability. Society of Petroleum Engineers - SPE Russian Petroleum Technology Conference. https://doi.org/10.2118/176538-ru DOI: https://doi.org/10.2118/176538-RU
Ramcharan, T., & Hosein, R. (2019). Radio Frequency Heating combined with Solvent Extraction-A method for oil recovery from surface oil sands. Journal of Petroleum Science and Engineering, 179, 328–336. DOI: https://doi.org/10.1016/j.petrol.2019.04.048
Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216–1231. DOI: https://doi.org/10.1016/j.fuel.2006.08.004
Rangel-German, E. R., Schembre, J., Sandberg, C., & Kovscek, A. R. (2004). Electrical-heating-assisted recovery for heavy oil. Journal of Petroleum Science and Engineering, 45(3–4), 213–231. https://doi.org/10.1016/j.petrol.2004.06.005 DOI: https://doi.org/10.1016/j.petrol.2004.06.005
Rehman, M. M., & Meribout, M. (2012). Conventional versus electrical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 2(4), 157–167. https://doi.org/10.1007/s13202-012-0034-x DOI: https://doi.org/10.1007/s13202-012-0034-x
Rocha-Meneses, L., Raud, M., Orupõld, K., & Kikas, T. (2019). Potential of bioethanol production waste for methane recovery. Energy, 133–139. https://doi.org/10.1016/j.energy.2019.02.073 DOI: https://doi.org/10.1016/j.energy.2019.02.073
Roland, U., Holzer, F., & Kopinke, F. (2011). Combining different frequencies for electrical heating of saturated and unsaturated soil zones. Chemical Engineering & Technology, 34(10), 1645–1651. DOI: https://doi.org/10.1002/ceat.201100226
Sadeghi, A., Hassanzadeh, H., & Harding, T. G. (2017a). A comparative study of oil sands preheating using electromagnetic waves , electrical heaters and steam circulation. International Journal of Heat and Mass Transfer, 111, 908–916. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.060 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.060
Sadeghi, A., Hassanzadeh, H., & Harding, T. G. (2017b). Modeling of desiccated zone development during electromagnetic heating of oil sands. Journal of Petroleum Science and Engineering, 154, 163–171. https://doi.org/10.1016/j.petrol.2017.04.033 DOI: https://doi.org/10.1016/j.petrol.2017.04.033
Saeedfar, A., Lawton, D., & Osadetz, K. (2016). Directional RF Heating for Heavy Oil Recovery Using Antenna Array Beam-Forming. In SPE Canada Heavy Oil Technical Conference (p. 34). Society of Petroleum Engineers. https://doi.org/10.2118/180695-MS DOI: https://doi.org/10.2118/180695-MS
Sahni, A., Kumar, M., & Knapp, R. B. (2000, April 4). Electromagnetic Heating Methods for Heavy Oil Reservoirs. SPE/AAPG Western Regional Meeting. https://doi.org/10.2118/62550-MS DOI: https://doi.org/10.2118/62550-MS
Sandberg, C., Thomas, K., & Hale, A. (2014). Advances in electrical heating technology for heavy oil production. SPE Heavy Oil Conference-Canada. DOI: https://doi.org/10.2118/170146-MS
Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571–590. DOI: https://doi.org/10.1590/0104-6632.20140313s00001853
Seeam, A., Laurenson, D., & Usmani, A. (2018). Evaluating the potential of simulation assisted energy management systems: A case for electrical heating optimisation. Energy and Buildings, 174, 579–586. DOI: https://doi.org/10.1016/j.enbuild.2018.06.063
Seidi Damyeh, M., Niakousari, M., Golmakani, M. T., & Saharkhiz, M. J. (2016). Microwave and ohmic heating impact on the in situ hydrodistillation and selective extraction of Satureja macrosiphonia essential oil. Journal of Food Processing and Preservation, 40(4), 647–656. DOI: https://doi.org/10.1111/jfpp.12644
Sood, A. (2016). Convective SAGD Process. SPE Canada Heavy Oil Technical Conference. DOI: https://doi.org/10.2118/180734-MS
Speight, J. (2016). Introduction to Enhanced Recovery Methods For Heavy Oil and Tar Sands (2nd ed.). Gulf Professional Publishing.
Speight, J. G. (2013). Enhanced recovery methods for heavy oil and tar sands. In Enhanced Recovery Methods for Heavy Oil and Tar Sands. https://doi.org/10.1016/C2013-0-15525-0 DOI: https://doi.org/10.1016/C2013-0-15525-0
Stinson, D. L., Carpenter, H. C., & Cegielski Jr, J. M. (1976). Power recovery from in-situ combustion exhaust gases. Journal of Petroleum Technology, 28(06), 645–650. DOI: https://doi.org/10.2118/5332-PA
Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017a). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil. Journal of Analytical and Applied Pyrolysis, 128, 92–101. DOI: https://doi.org/10.1016/j.jaap.2017.10.021
Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017b). The experimental study of effect of microwave heating time on the heavy oil properties: Prospects for heavy oil upgrading. Journal of Analytical and Applied Pyrolysis, 128, 176–186. DOI: https://doi.org/10.1016/j.jaap.2017.10.012
Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018a). Experimental investigation of the asphaltene deposition in porous media: accounting for the microwave and ultrasonic effects. Journal of Petroleum Science and Engineering, 163, 453–462. DOI: https://doi.org/10.1016/j.petrol.2018.01.017
Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018b). Experimental investigation of comparing electromagnetic and conventional heating effects on the unconventional oil (heavy oil) properties: Based on heating time and upgrading. Fuel, 228, 243–253. https://doi.org/10.1016/j.fuel.2018.04.141 DOI: https://doi.org/10.1016/j.fuel.2018.04.141
Thakur, G. C. (1997). Heavy Oil Reservoir Management. Latin American and Caribbean Petroleum Engineering Conference. DOI: https://doi.org/10.2118/39233-MS
Trautman, M., Ehresman, D., Edmunds, N., Taylor, G., & Cimolai, M. (2012). Effective solvent extraction system incorporating electromagnetic heating (Patent No. WO2012067613A1).
Vincent, K. D., MacKinnon, C. J., & Palmgren, C. T. S. (2004). Developing SAGD Operating Strategy using a Coupled Wellbore Thermal Reservoir Simulator. In SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting (p. 8). Society of Petroleum Engineers. https://doi.org/10.2118/86970-MS DOI: https://doi.org/10.2118/86970-MS
Vinsome, K., McGee, B. C. W., Vermeulen, F. E., & Chute, F. S. (1994). Electrical heating. Journal of Canadian Petroleum Technology, 33(04). DOI: https://doi.org/10.2118/94-04-04
Wang, H., Rezaee, R., Saeedi, A., & Josh, M. (2017). Numerical modelling of microwave heating treatment for tight gas sand reservoirs. Journal of Petroleum Science and Engineering, 152, 495–504. DOI: https://doi.org/10.1016/j.petrol.2017.01.055
Wang, Y., Wang, X., Xing, Y., Xue, J., & Wang, D. (2017). Three-dimensional numerical simulation of enhancing shale gas desorption by electrical heating with horizontal wells. Journal of Natural Gas Science and Engineering, 38, 94–106. DOI: https://doi.org/10.1016/j.jngse.2016.12.011
Wang, Z., Gao, D., Diao, B., Tan, L., Zhang, W., & Liu, K. (2019). Comparative performance of electric heater vs. RF heating for heavy oil recovery. Applied Thermal Engineering, 160, 114105. https://doi.org/10.1016/j.applthermaleng.2019.114105 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114105
Wang, Z., Gao, D., & Fang, J. (2018). Numerical simulation of RF heating heavy oil reservoir based on the coupling between electromagnetic and temperature field. Fuel, 220(January), 14–24. https://doi.org/10.1016/j.fuel.2018.02.012 DOI: https://doi.org/10.1016/j.fuel.2018.02.012
Wehunt, C. D., Burke, N. E., Noonan, S. G., & Bard, T. R. (2003). Technical challenges for offshore heavy oil field developments. Offshore Technology Conference. DOI: https://doi.org/10.4043/15281-MS
Xi, C., Qi, Z., Jiang, Y., Han, W., Shi, L., Li, X., Wang, H., Zhou, Y., Liu, T., & Du, X. (2017). Dual-Horizontal Wells SAGD Start-Up Technology: From Conventional Steam Circulation to Rapid and Uniform Electric Heating Technology. In SPE Symposium: Production Enhancement and Cost Optimisation (p. 9). Society of Petroleum Engineers. https://doi.org/10.2118/189241-MS DOI: https://doi.org/10.2118/189241-MS
Xiaoxiong, L. I. U., JIANG, Y., Yongbin, W. U., & Jialu, W. (2018). A mathematical model and relevant index prediction for constant-temperature electric heating of dual-horizontal-well SAGD start-up. Petroleum Exploration and Development, 45(5), 895–902. DOI: https://doi.org/10.1016/S1876-3804(18)30092-2
Yao, Z. X., Li, J. X., Wang, K., Song, Y. N., & Li, X. (2019). Experimental and numerical study on direct electrical heating for plug removal of subsea waxy crude pipelines. International Journal of Heat and Mass Transfer, 143, 118489. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118489
Yongbin, W., Xingmin, L., Wanjun, H., Fang, Z., Yueyue, F., Weinan, A., Youwei, J., & Xiaoxiong, L. (2017). Numerical Simulation of Electrical-Heating Assisted SAGD in Heterogeneous Heavy Oil Reservoirs. SPE Reservoir Characterisation and Simulation Conference and Exhibition, 1–10. https://doi.org/10.2118/186023-ms DOI: https://doi.org/10.2118/186023-MS
Yuan, J. Y., Huang, H., Mintz, R., Wang, X., Jossy, C., & Tunney, C. (2004). Wet electric heating for starting up SAGD/VAPEX. Canadian International Petroleum Conference. DOI: https://doi.org/10.2118/2004-130
Yuliusman, Afdhol, M. K., & Sanal, A. (2018). Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012016 DOI: https://doi.org/10.1088/1757-899X/316/1/012016
Yuliusman, Nasruddin, Afdhol, M. K., Amiliana, R. A., & Hanafi, A. (2017). Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent. IOP Conference Series: Earth and Environmental Science, 75(1). https://doi.org/10.1088/1755-1315/75/1/012009 DOI: https://doi.org/10.1088/1755-1315/75/1/012009
Zhong, L., Yu, D., Yang, H., Sun, Y., Wang, G., & Zheng, J. (2011). Feasibility Study on Produce Heavy Oil by Gas and Electrical Heating Assisted Gravity Drainage. Offshore Technology Conference. DOI: https://doi.org/10.4043/21649-MS
Zhu, J., Yang, Z., Li, X., Qi, S., Fang, Q., & Ding, Y. (2019). The experimental study of microwave heating on the microstructure of oil shale samples. Energy Science & Engineering, 7(3), 809–820. DOI: https://doi.org/10.1002/ese3.311
Zhu, M., Zhong, H., Li, Y., Zeng, C., & Gao, Y. (2015). Research on viscosity-reduction technology by electric heating and blending light oil in ultra-deep heavy oil wells. Journal of Petroleum Exploration and Production Technology, 5(3), 233–239. DOI: https://doi.org/10.1007/s13202-014-0126-x
Zhu, Z., Zeng, F., Zhao, G., & Laforge, P. (2013). Evaluation of the hybrid process of electrical resistive heating and solvent injection through numerical simulations. Fuel, 105, 119–127. DOI: https://doi.org/10.1016/j.fuel.2012.07.019
Zyrin, V. O., & Vasiliev, B. U. (2016). Electrothermal complex with downhole electrical heating generators for enhanced heavy oil recovery. International Journal of Applied Engineering Research, 11(3), 1859–1866.
Authors
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. The copyright in the text of individual articles (including research articles, opinion articles, and abstracts) is the property of their respective authors, subject to a Creative Commons CC-BY-SA licence granted to all others. JEEE allows the author(s) to hold the copyright without restrictions and allows the author to retain publishing rights without restrictions.