Geochemistry and tectonic setting of the supracrustal rocks from the central part of the Bundelkhand craton, India

Authors

  • M. M. Singh Bundelkhand University
  • Vinod K. Singh Bundelkhand University

DOI:

https://doi.org/10.25299/jgeet.2019.4.2-2.2175

Keywords:

Bundelkhand craton, Komatiite, island arc, Archean crust, subduction tectonic setting

Abstract

Supracrustal rocks (mafics and ultramafics) occurs along with banded iron formation, and felsic volcanics around Babina, Dhaura, and Mauranipur linear east-west trends in central part of the Bundelkhand craton represent Archean crust. The mafic and ultramafic rocks geochemically classified into Komatiite and Basaltic Komatiite and have high-Fe Tholeiitic in composition which may relate with the primitive mantle. The major and trace element geochemistry of mafic and ultramafic rocks correspond to hydrated mantle with wedge tectonic sources and ocean ridge geological characteristics.

Downloads

Download data is not yet available.

Author Biography

M. M. Singh, Bundelkhand University

Department of Geology,

Professor

References

Arndt, N.T., Kerr. A.C., Tarney, J., 1997. Dynamic melting in plume heads: The formation of Gorgona komatiites and basalt. Earth and Planetary Science Letters 146, 289-301.

Barley, M.E., Kerrich, R., Reudavy, I., Xie, Q., 2000. Late Archean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. Australian Journal of Earth Sciences 47(5), 873-883.

Basu, A.K., 1986. Geology of parts of Bundelkhand granite massif, Central India. Record Geological Survey of India 117, 61-124.

Bogina, M.M., Zlobin, V.L., Mints, M.V., 2015. Early Palaeoproterozoic volcanism of the Karelian Craton: age, sources, and geodynamic setting. International Geology Review 57 (11-12), 1433-1445.

Bose, M.K., 1997, Igneous Petrology. The World Press Private Limited, Calcutta.

Condie, K.C., 2003. Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem. Geophys. Geosyst. 4(1), http://dx.doi.org/10.1029/2002GC000333

Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79, 491–504.

Condie, K.C., 2014. Growth of continental crust: a balance between preservation and recycling. Mineral. Mag. 78 (3), 623–637.

Condie, K.C., 2015. Changing tectonic settings through time: Indiscriminate use of geochemical discriminant diagrams. Precambrian Research 266, 587–591.

Fitton, J.G., Saunders, A.D., Kempton, P.D., Hardarson, B.S., 2003. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem. Geophys. Geosyst. 4(3), 1032, http://dx.doi.org/10.1029/2002GC000424

Hertzberg, C., 1995. Generation of plume magma through time an experimental perspective. Chemical Geology 126(1), 1-16.

Irvine, T.N., Barager, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences 8, 523-548.

Jayananda, M., Chardon, D., Peucat, J.-J., Tushipokla, Fanning, C.M., 2015. Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes. Precambrian Research 268, 295–322.

Jensen, L.S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks: Ontario Division of Mines, Miscellaneous Paper 66, 22p.

Joshi, K. B., Bhattacharjee, J., Rai, G., Halla, J., Ahmad, T., Kurhila, M., Heilimo, E., Choudhary, A. K., 2017. The diversification of granitoids and plate tectonic implications at the Archean–Proterozoic boundary in the Bundelkhand craton, Central India. In: Halla, J., Whitehouse, M.J., Ahmad, T., Bagai, Z. (eds.) Crust–Mantle Interactions and Granitoid Diversification: Insights from Archean Cratons. Geological Society London, Spec. Publ. 449, 123–157.

Kaur, P., Zeh, A., Chaudhri, N., 2014. Characterisation and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand craton, northern India. Precambrian Res. 255, 236–244.

Kaur, P., Zeh, A., Chaudhri, N., Eliyas, N., 2016. Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Research 281, 384–413.

Kusky, T.M. Jiang, H.L., Tucker, R.D., 2001. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion year old oceanic crust and mantle. Science 292, 1142-1145.

Le Bas, T.M., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chamical classification of volcanic rocks on the total alkali-silica diagram: Journal of Petrology 27, 745-750.

Malviya, V.P., Arima, M., Pati, J.K., Kaneko, Y., 2006. Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: subduction related volcanism in the Archean Bundelkhand craton, Central India: Journal of Mineralogical and Petrological Sciences 101, 199-217.

Manikyamba, C., Naqvi, S.M., Subba Rao, D.V., Ram Mohan, M., Khanna, T.C., Rao, T. G., Reddy, G.L.N., 2005. Boninite from the Neoarchean Gadwal greenstone belt, eastern Dharwar craton, India: implication for Archean subduction processes. Earth and Planetary Science Letters 230, 65-83.

Massaki, O., Yasuhito, O., Tsuyoshi, T., Toshiaki, T., Tomokazu, H., Warwick, A.C., 2001. Petrography and geochemistry for mafic and ultramafic rocks from Tonagh Island in the Napier Comlex, East Antartica: A preliminary report. Journal of Polar Geoscience 12, 87-100.

Mishra, S., Singh, P.K., Singh, V.K., Slabunov, A.I., Nainwal, H.C., Chaudhary, N., 2018. Neoarchean Granitoids of Bundelkhand Craton, India: Geochemistry and Geodynamic Settings. Archaeology & Anthropology: Open Access 3 (suppl-3), 114–123, https://doi.org/10.31031/AAOA.2018.03.000565

Mohan, M.R., Piercey, S.J., Kamber, B.S. Sarma, D.S., 2013. Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: New geochemical and isotopic constraints. Precambrian Research 227, 204-226.

Mondal, M.E.A., Goswami, J.N., Deomurari, M.P., Sharma, K.K., 2002. Ion microprobe 207Pb/206/Pb ages of zircon from the Bundelkhand massif, northern India: implication for crustal evolution of Bundelkhand - Aravalli protocontinent: Precambrian Research 117, 85-100.

Naqvi, S.M., 2005. Geology and Evolution of the Indian Plate (from Hadean to Holocene - 4Ga to 4Ka): Capital Publishing Company, New Delhi, 450.

Paris, L.A., 1987. The 3.5 Ga Barberton greenstone successions, South Africa: implication for modeling the evolution of Archaean crust. Journal of Geology, 5-24.

Pati, J.K., Raju, S., Malviya, V.P., Bhushan, R., Prakash, K., Patel, S.C., 2008, Mafic dykes of Bundelkhand craton, Central India: field, petrological and geochemical characteristics. In: Srivastava, R.K., Sivaji, Ch. and Chalapathi
Rao, N.V. (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology, Narosa Publishing House, New Delhi, 547–569.

Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285.

Polat, A., Hofmann, A.W., Munker, C., Regelous, M., Appel, P.W.U., 2003. Contrasting geochemical patterns in the 3.7-3.8 Ga pillow basalt cores and rims, Isua greenstone belt, South¬west Greenland: implications for post magmatic alteration processes. Geochimica et Cosmochimica Acta 67, 441-457.

Pradhan, V.R., Meert, J.G., Pandit, M.K., Kamenov, G., Mondal, M.E.A., 2012. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: Implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Research 198-199, 51-76.

Ramakrishnan, M., Vaidyanadhan, R., 2010. Geology of India, vol. 1: Geological Society of India, Bangalore, 556.
Saha, L., Frei, D., Gerdes, A., Pati, J.K., Sarkar, S., Patole, V., Bhandari, A., Nasipuri, P., 2016. Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies. Geological Magazine 153, 79–192.

Sarkar, A., Paul D.K., Potts, P.J., 1996. Geochronology and geochemistry of the Mid–Archean, Trondhjemitic gneisses from the Bundelkhand craton, Central India, in Saha, A.K., ed., Recent Researches in Geology 16, 76-92.
Sharma, K.K., Rahman, A., 2000. The Early Archean - Palaeoproterozoic crustal growth of the Bundelkhand Craton, Northern Indian Shield, in Dev, M., ed., Crustal Evolution and Metallogeny in the Northwestern Indian Shield, 51-72.

Shimizu, K., Nakamura, E., Maruyama, S., 2005. The Geochemistry of ultramafic to mafic volcanics from the Be-lingwe greenstone belt, Zimbabwe: Magmatism in an Arch¬ean continental large igneous province. Journal of Petrology 46(11), 2367-2394.

Singh, M.M., 2005. Petrology of supracrustal rocks of Bundelkhand massif, Babina-Mauranipur transects, Uttar Pradesh. Unpublished Ph.D. thesis, Bundelkhand University, Jhansi.

Singh, M.M., 2015. Supracrustal rocks of Bundelkhand massif (granite, gneisses and volcano-metasedimentaries), LAP Lambart Academic publishing, Germany.

Singh, P.K., Verma, S.K., Moreno, J.A., Singh, V.K., Oliveira, E.P., 2018. Geochronology and Geochemistry of Basalts: Empirical evidences from the Babina and Mauranipur greenstone belts of the Bundelkhand craton, India. In: Goldschmidt Conference abstract, 2018.

Singh, P.K., Verma, S.K., Moreno, J.A., Singh, V.K., Malviya, P.K., Oliveira, E.P., Mishra, S., Arima, M., 2019b. Geochemistry and Sm-Nd isotope systematics of metabasalts from the Babina and Mauranipur greenstone belts, Bundelkhand craton: Implications for tectonic setting and Paleoarchean mantle evolution. Lithos 330–331, 90–107.

Singh, P.K., Verma, S.K., Singh, V.K., Moreno, J.A., Oliveira, E.P., Mehta, P. 2019c. Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand craton: Implications for the late-Archean crustal evolution. J. of Asian Earth Sciences, 174C, 263–282, https://doi.org/10.1016/j.jseaes.2018.12.013

Singh, S.P., Singh, M.M., Srivastava, G.S., Basu, A.K., 2007. Crustal evolution in Bundelkhand area, Central India. Journal of Himalayan Geology 28(2), 79-101.

Singh, V.K., Slabunov, A., 2015a. The Central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: Geology, composition, and geochronology of supracrustal rocks. Int. Geol. Rev. 57, 1349–1364.

Singh, V.K., Slabunov, A., 2015b. Geochemical characteristics of Banded Iron Formation and Metavolcanics of Babina greenstone belt of the Bundelkhand Craton, Central India. Journal of Economic Geology and Georesource Management 10, 63-74.

Singh, V.K., Nesterova, N., Slabunov, A., Singh, M.M., 2019a. Tectonic divisions of the Bundelkhand Craton Indian Shield: on the basis of geological, geophysical and Sm-Nd systematic of granitoids data. In Dwivedi, A.K.,
Purohit, R., (eds.), National Seminar on Geological Aspects of Northwest Indian Shield, on March 15-16, 2019 organised at Department of Geology, M.S. University, Udaipur, India, p. 32–33.

Slabunov, A.I., Singh, V.K., 2018. Meso–Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: new data from greenstone belts. International Geology Review, https://doi.org/10.1080/00206814.2018.1512906

Svetov, S.A., Svetova, A.I., Huhma, H. 2001. Geochemistry of the komatiite-tholeiite rock association in the Vedlozero-Segozero Archean greenstone belt, central Karelia. Journal of Geochemistry International 39 (Suppl.1), S24-S38.

Verma, S.K., Oliveira, E.P., Verma, S.P., 2015. Plate tectonic settings for Precambrian basic rocks from Brazil by multidimensional tectonomagmatic discrimination diagrams and their limitations. Int. Geol. Rev. 57, 1566–1581.

Verma, S.K., Verma, S.P., Oliveira, E.P., Singh, V.K., and More, J.A., 2016. LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India. Journal of Asian Earth Sciences 118, 125–137.

Xie, Q., Me Cuaig, T.C., Kerrich, R., 1995. Secular trends in the melting depth of mantle plumes: evidence from HFSE/ REE systematics of Archean high Mg lava and modern oce¬anic basalt. Chemical Geology 126, 29-42.

Downloads

Published

2019-07-25

Issue

Section

Special Edition (Geology, Geomorphology and Tectonics of India)

Most read articles by the same author(s)