Geochemistry of Volcanic Rocks in Ponelo Island, North Gorontalo, Indonesia

Authors

  • Siti Chusnul Chatimah Nurahmah Faculty of Geological Engineering, Padjadjaran University, Jl. Dipati Ukur No. 35, Bandung, Indonesia
  • Mega Fatimah Rosana Faculty of Geological Engineering, Padjadjaran University, Jl. Dipati Ukur No. 35, Bandung, Indonesia
  • Iyan Haryanto Faculty of Geological Engineering, Padjadjaran University, Jl. Dipati Ukur No. 35, Bandung, Indonesia

DOI:

https://doi.org/10.25299/jgeet.2024.9.3.16832

Keywords:

Geochemistry, Subduction, Island Arc Volcanics, North Sulawesi Arc

Abstract

Ponelo Island is located in the northern part of Sulawesi, which is still an enigma regarding the genesis of the volcanic rocks found on this island. Therefore, the objective of this study is to understand the petrogenesis and tectonic implication of these volcanic rocks. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) to obtain trace and rare earth elements is the method of this study. The volcanic rocks found on Ponelo Island consist of basalt and basaltic andesite rocks with a calc-alkaline affinity. The transition data suggested a highly fractionated cause of low transition element (Ni=17-38 ppm; Cr=13-47) compared to primary magma concentration, anomalies negative of Ba, Sr, and Ti of spider diagrams, and negative anomaly of Eu (Eu/Eu*=0.88-0.99). Relationship between low concentration between Ce/Y (0.74-0.76) and La/Yb vs Sm/Yb ratio indicated ~5% spinel-lherzolite mantle source partial melting. On the other hand, incompatible element ratios, such as Ba/Nb (39.03-45.28), Ba/Th (75.52-82.67), Rb/Nb (3.93-6.22), K/Nb (1772.22-2703.45), Ba/La=13.67-14.57, Th/La (0.17-0.18), La/Nb (2.91-3.16), depleted Nb/U (6-6.74), and also lack of xenolith or enclaves indicate cryptic crustal contamination.  The slab-derived fluid indicated by ratios of Rb/Y (0/019-0/05), Nb/Y (0.10-0.11), Th/Yb (0.52-0.61), and Ba/La ratio (13.29-14.57). Ponelo volcanic rocks shows typical calc-alkaline island arc tectonic setting particularly with enrichment in ion lithophile element (LILE) and light rare earth elements (LREE) along with depletion in high field strenght elements (HFSE) and heavy rare earth elemets (HREE), as shown by spider diagrams.

Downloads

Download data is not yet available.

References

Allegre, C. J., & Minster, J. F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1), 1-25).

Ayalew, D., Jung, S., Romer, R. L., Kersten, F., Pfänder, J. A., & Garbe-Schönberg, D. 2016. Petrogenesis and origin of modern Ethiopian rift basalts: Constraints from isotope and trace element geochemistry. Lithos 258: 1-14.

Bachri, S. 2006. Stratigrafi Lajur Volkano-Plutonik Daerah Gorontalo, Sulawesi. Jurnal Geologi Dan Sumberdaya Mineral, 16(2), 94–106.

Bachri, S., Sukido, & Ratman, N. (2011). Peta Geologi Lembar Tilamuta (Skala 1:250.000). Pusat Penelitian dan Pengembangan Geologi.

Bau, M., and Knittel, U. 1993. Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: Evidence from Mt. Arayat,Philippines. Chemical Geology, 105, 233–251.

Chen, X., Shu, L., Santosh, M., & Zhao, X. 2013. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: geochemistry, zircon U–Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia. Lithos, 168, 48-66.

Elburg, M., & Foden, J. 1998. Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth and Planetary Science Letters, 163(1-4), 381-398.

Elderfield, H., and Greaves, M. J. 1982. The rare earth elements in seawater. Nature, 296(5854) 214-219.

Frey, F. A., & Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38(1), 129-176.

Gan, C., Wang, Y., Qian, X., Lu, X., Mustapha, K. A., Zhang, Y., & Wu, S. 2022. Diorite enclaves and host granite of the early Miocene Gorontalo pluton in the North Sulawesi Arc, Indonesia: Implications for recycled oceanic crust and crust-mantle interaction. Journal of Asian Earth Sciences, 227, 105101.

Gill, J. B. 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Heidelberg.

Gill, R. 2010. Igneous rocks and processes: A practical guide. John Wiley & Sons.

Hall, R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570, 1–41.

Hall, R. 2019. The subduction initiation stage of the Wilson cycle. Geological Society, London, Special Publications, 470, 415-437.

Hall, R., & Wilson, M. 2000. Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences, 18(6), 781–808.

Hastie A.R., Kerr A.C., Pearce J.A. and Mitchell S.F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J. Petrol. 48(12), 2341-2357.

Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613), 219-229.

Kavalieris, I., Van Leeuwen, T. M., & Wilson, M. 1992. Geological setting and styles of mineralization, north arm of Sulawesi, Indonesia. Journal of Southeast Asian Earth Sciences, 7(2–3), 113–129.

Maulana, A., Imai, A., Van Leeuwen, T., Watanabe, K., Yonezu, K., Nakano, T., Boyce, A., Page, L., and Schersten, A. 2016. Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia. Journal of Asian Earth Sciences, 124, 102–125.

McKenzie, D.P., and Bickle, M.J. 1988 The volume and composition of melt generated by extension of the lithosphere: Journal of Petrology, 29, 625–679.

Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38(5), 757-775.

Li, M., Huang, S., Hao, T., Dong, M., Xu, Y., Zhang, J., He, Q., and Fang, G. 2023. Neogene subduction initiation models in the western Pacific and analysis of subduction zone parameters. Science China Earth Sciences 66(3), 472-491.

Pearce, J. A. 1982. Trace element characteristics of lavas from destructive plate boundaries. Orogenic andesites and related rocks, 528-548.

Pearce, J. A. 1996. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12, 79-113.

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48.

Pearce, J. A., & Gale, G. H. 1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications, 7(1), 14-24.

Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J., Taylor, S.R., 1980. Chemical characteristics of island-arc basalts: implications for mantle sources. Chemical Geology, 30, 227–256.

Plank, T., 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46, 921–944.

Plank, T., and Langmuir, C. H. 1998. The chemical composition of subducting sediments and its consequences for the crust and mantle. Chemical Geology, 145, 325–394.

Polvé, M., Maury, R., Bellon, H., Rangin, C., Priadi, B., Yuwono, S., Joron, J., & Atmadja, R. S. 1997. Magmatic evolution of Sulawesi (Indonesia): Constraints on the Cenozoic geodynamic history of the Sundaland active margin. Tectonophysics, 272(1), 69–92.

Rangin, C., Maury, R. C., Bellon, H., Cotten, J., Polve, M., Priadi, B., Soeria-Atmadja, R., & Joron, J.-L. 1997. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin. Bulletin de La Société Géologique de France.

Rollinson, H.R. 2014. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London.

Sasajima, S., Nishimura, S., Hirooka, K., Otofuji, Y., Van Leeuwen, T., & Hehuwat, F. (1980). Paleomagnetic studies combined with fission-track datings on the western arc of Sulawesi, East Indonesia. Tectonophysics, 64(1–2), 163–172.

Sendjaja, P., Suparka, E., Abdullah, C. I., & Sucipta, I. E. 2020. Characteristics of the Mount Colo Volcano, Una-Una Island, Central Sulawesi Province: Tectonic Evolution and Disaster Mitigation, 589(1), 012005.

Spakman, W., Hall, R., 2010. Surface deformation and slab-mantle interaction during Banda arc subduction rollback. Nat. Geosci., 3, 562–566.

Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, AD., and Norry, MJ., eds Magmatism in the ocean basins. Geological Society of London Special Publication, 42, 313- 345.

Surmont, J., Laj, C., Kissel, C., Rangin, C., Bellon, H., & Priadi, B. 1994. New paleomagnetic constraints on the Cenozoic tectonic evolution of the North Arm of Sulawesi, Indonesia. Earth and Planetary Science Letters, 121(3–4), 629–638.

Taylor, S. R., & McLennan, S. M. 1985. The continental crust: its composition and evolution. Blackwell: Oxford, UK.

Thompson, R. N. 1982. Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology, 18(1), 49-107.

Weaver, B. L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104(2-4), 381–397.

White, L. T., Hall, R., & Armstrong, R. A. 2014. The age of undeformed dacite intrusions within the Kolaka Fault zone, SE Sulawesi, Indonesia. Journal of Asian Earth Sciences, 94, 105–112.

Wilson, B. M. 2007. Igneous Petrogenesis: A global tectonic approach. Springer Science & Business Media.

Woodhead, J.D., Hergt, J.M., Davidson, J.P., and Eggins, S.M. 2001. Hafnium isotope evidence for ‘conservative’element mobility during subduction zone processes. Earth and Planetary Science Letters, 192, 331–346.

Zhang, X., Tien, C. Y., Chung, S. L., Maulana, A., Mawaleda, M., Chu, M.F., & Lee, H. Y. 2020. A Late Miocene magmatic flare-up in West Sulawesi triggered by Banda slab rollback. GSA Bulletin, 132(11–12), 2517–2528.

Zhang, X., Huang, T.-N., Chung, S.-L., Maulana, A., Mawaleda, M., Tien, C.-Y., Lee, H.-Y., & Liu, P.-P. 2022. Late Eocene subduction initiation of the Indian Ocean in the North Sulawesi Arc, Indonesia, induced by abrupt Australian plate acceleration. LITHOS, 422–423, 106742.

Zhao, J, H. dan Zhou, M, F. 2007: Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152, 27–47.

Zhao, J.H., and Zhou, M.F. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 101, 152–168.

Downloads

Published

2024-09-30