Magma Petrogenesis Study Based on Morphology and Texture Of Zircon Minerals: Case Study At The Causative Intrusive In The HLE Porphyry Copper-Gold Prospect, Sumbawa Island, Indonesia

Authors

  • Fadlin Department of Geological Engineering, Jenderal Soedirman University, Purwokerto, Indonesia
  • Raden Isnu Hajar Sulistyawan Geological Museum, Geological Agency, The Ministry of Energy and Mineral Resources Republic, Indonesia
  • Arifudin Idrus Geological Museum, Geological Agency, The Ministry of Energy and Mineral Resources Republic, Indonesia
  • Raden Muhammad Asfaro Department of Geological Engineering, Jenderal Soedirman University, Purwokerto, Indonesia
  • Hernani Vitorino Nhatinombe Department of Geology, Eduardo Mondlane Universite, Maputo, Mozambique
  • Wildan Nur Hamzah Akita University, Akita City, Japan

DOI:

https://doi.org/10.25299/jgeet.2024.9.2.13248

Keywords:

Zircon morphology, Pupin methods, petrography, cathodoluminescence (CL), Sumbawa Island

Abstract

The zircon mineral is one of the accessory minerals within igneous rocks for its ability to resist hydrothermal and metamorphic processes. By examining their morphology and texture, zircon minerals can provide valuable insights into magma's petrogenesis, including temperature and composition. Two methods used to reach the research objectives include Petrography and SEM-CL analysis of the zircon grain from the diorite porphyry of the HLE prospect. On the basis of Petrography observation, the grain size of zircon ranges from 50 to 300 µm in size, and most have a transparent to grey color with prismatic, non-prismatic euhedral-subhedral elliptical, and non-prismatic rounded in shape. The zircon crystal typologies from the diorite porphyry are classified into S10, P2, S12, S13, S16, and S17 types, indicating the wide range of the crystallization temperature of zircon, ranging from 700 to 800 °C. The zircon from the diorite porphyry of the HLE prospect shows the medium values of pyramids typology, which is {101} = {211}. It corresponds to a medium Al/Na + K ratio (A index) value, indicating zircon as a product from the calc-alkaline magmas series. The trend of the calc-alkaline/sub-alkaline in typology suggests crustal sources mixed with mantle material. Furthermore, based on SEM-CL analysis the zircon shows dominantly oscillatory zoning with thin bands, and some grains show weak zoning in the outer core, typical of magmatic zircon. Moreover, the presence of lamellae texture of magnetite-ilmenite mineral under the scanning electron microscopy (BSE image) can be interpreted as the magma related to the high oxidizing magma.

Downloads

Download data is not yet available.

References

Aldan, A.F., Idrus, A., Takahashi, R., Kaneko, G., 2022. High-Sulfidation Epithermal – Porphyry Transition in the Kumbokarno Prospect, Trenggalek District , East Java, Indonesia: Constraints from Mineralogy, Fluid Inclusion, and Sulfur Isotope Studies. Resource Geology 72: 1-25.

Barberi, S., Bigioggero, B., Boriani, A., Cattaneo, M.R., Cavallin, A., Eva, C., Cioni, R., Gelmini, R., Giorgetti, F., Iaccarino, S., Innocenti, F., Marinelli, G., Slejko, D., & Sudradjat, A.,1987. The Island of Sumbawa; a major structural discontinuity in the Indonesian Arc. Bollettino Della Societa Geologica Italiana, 106, 547-620.

Benisek, A. and Finger, F.,1993. Factors controlling the development of prism faces in granite zircons- a microprobe study Contrib. Mineral. Petrol., 114 (2), pp. 441-451

Carlile, J.C., and Mitchell, A.H.G.,1994. Magmatic arcs and associated gold and copper mineralization in Indonesia. Journal of Geochemical Exploration, 50, 91-142.

Chiaradia, M., and Caricchi, L., 2017. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci. Rep. 7:44523.

Cooke, D.R., Hollings, P. and Walshe, J.L., 2005. Giant deposits characteristics, distribution, and tectonic controls: Economic Geology, 100, 801-818.

Dilles, J.H., A.J.R. Kent, J.L. Wooden, R.M. Tosdal, A. Koleszar, R.G. Lee, and L.P. Farmer., 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110, p.241–251.

Elburg, M.A., van Bergen, M.J., Foden, J.D., 2004. Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda–Banda arc, Indonesia. Geology 32, 41–44.

Fadlin, Shaban, G., and Wildan, N.H., 2018. Active Continental Margin (ACM) Origin of tholeiitic magmatism in northern and southern Serayu-Banyumas, Central Java. Jurnal Geology dan Sumberdaya Mineral (JGSM), 19(1), 15-30.

Fadlin, Shaban, G., Ariyanti, N., Hamzah, W. N., and Aditama, M. R., 2021. Tholeiitic basalt in Banyumas Basin (Kebasen, Central Java): The evidence of sedimentary recycling input and the contribution of oceanic slab on fore-arc active continental margin (ACM) magmatism. IJOG, 8(2), 233-253.

Fadlin, Takahashi, R., Agangi, A., Sato, H., Idrus, A., Sutopo, B. et al., 2023. Geology, mineralization and calcite-rich potassic alteration at the Humpa Leu East (HLE) porphyry Cu-Au prospect, Hu'u district, Sumbawa Island, Indonesia. Resource Geology, 73(1), e12309.

Foden, J.D. and Varne, R., (1980) The petrology and tectonic setting of Quaternary-Recent volcanic centres of Lombok and Sumbawa, Sunda arc: Chemical Geology, 30, 201−226.

Gardner, M.F., Troll, V.R., Gamble, J.A., Gertisser, R., Hart, G.L., And Rob M. Ellam, R.M., Harris, C., And Wolff, J.A., 2013. Crustal Differentiation Processes at Krakatau Volcano, Indonesia. Journal of Petrology, 54(1), 149-182.

Garwin, S. L., 2002. The Geologic Setting of Intrusion-Related Hydrothermal Systems near the Batu Hijau Porphyry Copper-Gold Deposit, Sumbawa, Indonesia: Global Exploration 2002, Integrated Methods for Discovery, Colorado, USA. Society of Economic Geologists, Special Publication 9, 333-366.

Gertisser, R and Keller, J., 2003. Trace Element and Sr, Nd, Pb and O Isotope Variations in Medium-K and High-K Volcanic Rocks from Merapi Volcano, Central Java, Indonesia: Evidence for the Involvement of Subducted Sediments in Sunda Arc Magma Genesis. Journal of Petrology, 44(3), 457-489.

Hamilton, W. B., 1979. Tectonics of the Indonesian Region. US Geology Survey Professional Paper 1078, Virginia, US.

Hattori, K., 2018. Porphyry copper potential in Japan based on magmatic oxidation state. Resource Geology., 68, p.126–137.

Idrus, A., Kolb, J., Meyer, F.M., Arif, J., Setyandhaka, D., Kepli, S. (2009a) A Preliminary Study on Skarn-Related Calc-Silicate Rocks Associated with the Batu Hijau Porphyry Copper-Gold Deposit, Sumbawa Island, Indonesia. Resource Geology, 59 (3), 295-306.

Idrus, A., Kolb J. and Meyer F.M. (2009b) Mineralogy, Lithogeochemistry and Elemental Mass Balance of the Hydrothermal Alteration Associated with the Gold-rich Batu Hijau Porphyry Copper Deposit, Sumbawa Island, Indonesia. Resource Geology, 59 (3), 215–230.

Idrus, A., and Kolb, J. and Meyer, F.M. (2007). Chemical composition of rock-forming minerals in copper-gold-bearing tonalite porphyry intrusions at the Batu Hijau deposit, Sumbawa Island, Indonesia: Implications for crystallisation conditions and fluorine-chlorine fugacity. Resource Geology. 57, 102-113.

Idrus, A,., Aji Syailendra Ubaidillah, I Wayan Warmada, and Syafruddin Maula., 2021. Geology, Rock Geochemistry and Ore Fluid Characteristics of the Brambang Copper-Gold Porphyry Prospect, Lombok Island, Indonesia. Journal of Geoscience (JGEET), 6(1).

Katili, J. A., 1975. Volcanism and plate tectonics in the Indonesian island arcs. Tectonophysics. 26, 3-4, 165-188.

Levashova, E.V.; Skublov, S.G.; Popov, V.A., 2021. Distribution of Trace Elements Controlled by Sector and Growth Zonings in Zircon from Feldspathic Pegmatites (Ilmen Mountains, the Southern Urals). Geosciences, 11, 7.

Li Huan, Xiao-Jun Hu, Safiyanu Muhammad Elatikpo, Jing-Hua Wu, Wei-Cheng Jiang, Wen-Bo Sun, Nuerkanati Madayipu., 2023. Zircon as a pathfinder for ore exploration. Journal of Geochemical Exploration, Volume 249.

Maryono, Adi., Harrison, R. L., Cooke, D. R., Rompo, I., Hoschke, T. G., 2018. Tectonics and Geology of Porphyry Cu-Au Deposits along the Eastern Sunda Magmatic Arc, Indonesia. Economic Geology, 113, 7-38.

Martins, H.C.B. Sant’Ovaia, H. and Noronha, 2009. Genesis and emplacement of felsic Variscan plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: an integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos, 111, pp. 142-155

Martins, H.C.B. Sant’Ovaia, H. and Noronha, 2013. Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: Constraints from U–Pb zircon geochronology, AMS data and Sr–Nd–O isotope geochemistry. Lithos, 162/163, pp. 221-235

Martins, H.C.B., Simoes, P.P., and Abreu, J., 2014. Zircon crystal morphology and internal structures as a tool for constraining magma sources: Examples from northern Portugal Variscan biotite-rich granite plutons. C. R. Geoscience, 346, p.233-243.

Myaing, Y., Idrus. A., Titisari A., 2018. Fluid Inclusion Studyof The Tumpangpitu High Sulfidation Epithermal Gold DepositInBanyuwangi District, East Java, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology (JGEET), 3(1).

Nevolko, P.A., Svetlitskaya, T.V., Savichev, A.A., Vesnin, V.S., and Fominykh, P.A., 2021. Uranium-Pb zircon ages, whole-rock and zircon mineral geochemistry as indicators for magmatic fertility and porphyry Cu-Mo-Au mineralization at the Bystrinsky and Shakhtama deposits, Eastern Transbaikalia, Russia. Ore Geology Reviews, 139, Part B.

PT STM., 2018. Internal Exploration Report and Discussion (unpublished)

Pupin, J. P., and Turco, G., 1972. Une typologie originale du zircon accessoire Bull. Soc. Fr. Mineral. Cristallogr., 95 (1972), pp. 348-359

Pupin, J. P., and Turco, G., 1975. Typologie du zircon accessoire dans les roches plutoniques, dioritiques, granitiques et syénitiques. Facteurs essentiels déterminant les variations typologiques. Petrologie, I (2), pp. 139-156

Pupin, J. P., 1980. Zircon and granite petrology Contrib. Mineral. Petrol., 110, pp. 463-472

Pupin, J. P., 1985. Magmatic zoning of Hercynian Granitoïds in France based on zircon typology. Schweiz. Mineral. Petrogr. Mitt., 65, pp. 29-56

Pupin, J. P., 1988. Granites as indicators in paleo-geodynamics. Rend. Soc. Ital. Mineral. Petrol., 43 (2), pp. 237-262

Ratman, N., & Yasin, A., 1978. Peta geologi regional lembar komodo, Nusatenggara. Pusat Penelitian dan Pengembangan Geologi.

Reubi, O., Nicholls, A. I., and Kamenetsky, V. S., 2002. Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research, 119(1-4), 255-274.

Richards, J. P., 2011. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol. 106 (7), p.1075–1081.

Richards, J. P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233, 27–45.

Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1), 261–295.

Sillitoe, R.H. (2010). Porphyry Copper Systems. Economic Geology, 105(1), 3-41.

Sundhoro, H., Bakrun, Sulaeman, B., T., Sumardi, E., Imnuel, M., Risdiato, D. and Liliek, R. (2005) Survei Panas Bumi Terpadu (Geologi, Geokimia dan Geofisika) Daerah Hu’u, Kabupaten Dompu, Provinsi Nusa Tenggara Barat. Prosiding Kolokium Hasil Laporan Lapangan-DIM, 38, 1−10.

Sun, W. D., Huang, R.F., Li, H., Hu, Y. B., Zhang, C. C., Sun, S. J., Zhang, L. P., Ding, X., Li, C. Y., and Zartman, R.E., 2015. Porphyry deposits and oxidized magmas. Ore Geol. Rev., 65, 97–131.

Setijadji, L.D., Kajino, S., Imai, A., and Watanabe, K., 2006. Cenozoic island arc magmatism in Java Island (Sunda arc, Indonesia): Clues on relationships between geodynamics of volcanic centers and ore mineralization. Resource Geology, 56, 267–291.

Setijadji, L.D., and Maryono, A., 2012. Geology and arc magmatism of the eastern Sunda arc, Indonesia: Indonesian Society of Economic Geologists (MGEI) Annual Convention, Malang, Indonesia, November 26–27, 2012, Proceedings, 1–22.

Sudradjat, A., Andi Mangga, S., dan Suwarna, N., 1998. Peta Geologi Lembar Sumbawa, Nusa Tenggara, Skala 1: 250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Suratno, M., 1994. Peta Geologi dan Potensi Sumberdaya & Mineral Provinsi Nusa Tenggara Barat, Skala 1: 250.000, Kantor Wilayah Departemen Pertambangan dan Energi Nusa Tenggara Barat.

Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A., 2003.

A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci U S A. 100(14):8074-9.

Watson E.B., 1996. Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance. Trans Roy Soc Edinburgh: Earth Sci 87:43-56. Also: Geol Soc Am Spec Paper 315:43-56

Downloads

Published

2024-06-29