The Petrology and Volcano-Stratigraphy of The Muria-Peninsula High-K Volcanic Rocks, Central Java, Indonesia

Authors

  • Sri Mulyaningsih Institut Sains & Teknologi AKPRIND, Jl. Kalisahak No. 28 Komplek Balapan Yogyakarta, Indonesia
  • Sutikno Bronto Center of Geological Survey-Badan Geologi, Jl. Diponegoro No 57 Bandung, Indonesia
  • Arie Kusniadi Center of Geological Survey-Badan Geologi, Jl. Diponegoro No 57 Bandung, Indonesia
  • Lilis Apriyanti Institut Sains & Teknologi AKPRIND, Jl. Kalisahak No. 28 Komplek Balapan Yogyakarta, Indonesia
  • L. Budiyanto Institut Sains & Teknologi AKPRIND, Jl. Kalisahak No. 28 Komplek Balapan Yogyakarta, Indonesia
  • Danis Agoes Wiloso Institut Sains & Teknologi AKPRIND, Jl. Kalisahak No. 28 Komplek Balapan Yogyakarta, Indonesia

DOI:

https://doi.org/10.25299/jgeet.2022.7.2.9602

Keywords:

petrology, mineralogy, stratigraphy, high-K volcanic rocks, very high-K volcanic rocks, characteristics

Abstract

The Muria-Peninsula is a Quaternary volcano located in the northern Sunda arc. Its activity was controlled under high potassic and very high potassic magma series resulting in leucite-rich trachyte and pyroxene-rich basaltic-andesite. It is a strato-type volcano that is composed of lava, breccia, and tuff layers, and some dikes have some volcanic craters and maars varying in age and composition. The study area is covering the volcanoes of Muria, Genuk, and Patiayam. This paper aims to describe the petrology, mineralogy, and volcano-stratigraphy of the different volcanic materials. The data and materials were sourced from the primary and secondary data. The methods are field mapping, stratigraphy measurements, collecting samples, thin section analyses, and major element geochemistry using X-Ray fluorescence (XRF). The results describe two groups of volcanic rocks consisting of pyroxene-rich andesitic-basaltic volcanic materials and leucite-rich trachytic volcanic materials. Augite presents in the andesitic basalt together with small grains of olivine and a few anorthite and foid minerals. Aegirine (Na-Pyroxene) is present in the leucite-rich trachyte that is often associated with biotite and hornblende. Na-Ca Plagioclase such as labradorite-andesine is often present in the basaltic-trachy-andesite that is usually rarely leucite. The major elements show high-K volcanic rocks with % K2O is 4-5.9% and very high-K volcanic rocks (with % K2O is between 6-8.24%) and low-K volcanic rocks that contain % K2O is 2-3,9%. There are two groups of high-K to very high-K volcanic materials consisting of silicic-rich volcanic materials (~57-64% of SiO2) and low-silicic volcanic materials (~46-50%). The TAS diagram identifies tephrite, phonolite, and trachyte. Stratigraphic data identifies calcareous sediments of the Bulu Formation as the basement rocks of the Muria trachyandesite. Beds of pumice-rich volcanic breccia of the Ujungwatu Formation are the basement rocks of the basanite-tephrite of the Genuk Volcano, and the tuff of the Ujungwatu is also exposed consisting of the basanite-tephritic-phonolite of the Patiayam Volcano. The leucite-like feldspars are very common in the andesite lava and dikes that compose the crater of Muria. Most of the Muria volcanic materials are rarely in leucite, while some maars contain pumice-rich pyroclastic flows and basaltic lava. The results of the major elemental analysis of the Muria materials indicate that the rock tends to be of medium to high K affinity (~2% K2O). The Genuk and older Muria are consisting of leucite-rich tephrite-phonolite. It was two periods of magmatic series developed in the Muria-Peninsula that was resulting in the high-K to very high-K magmatism and the medium K Kalk-alkaline magmatism.

Downloads

Download data is not yet available.

References

Astjario, P., Kusnida, D., 2016. Penafsiran struktur geologi Semenanjung Muria dari data citra satelit. J. Geol. Kelaut. 5.

Bas, M.J.L.E., Maitre, R.W. Le, Streckeisen, A., Zanettin, B., Rocks, I.S. on the S. of I., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745–750.

Basuki, W., June, M., Heni, S., 2011. Assessment of Muria geochemistry evolution and related to volcanic hazard to NPP site at Muria.

Birch, W.D., 1976. Mineralogical note the occurrence of a leucite‐bearing lava at Cosgrove, Victoria. J. Geol. Soc. Aust. 23, 435–437.

Bronto, S., Mulyaningsih, S., 2007. Gunung api maar di Semenanjung Muria. Indones. J. Geosci. 2, 43–54.

Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471, 96–113.

Chien, W.-Z., 1984. Incompatible elements and generalized variational principles. Adv. Appl. Mech. 24, 93–153.

Cox, K.G., 2013. The interpretation of igneous rocks. Springer Science & Business Media.

Edwards, C.M.H., 1990. Petrogenesis of tholeiitic, calc-alkaline and alkaline volcanic rocks, Sunda arc, Indonesia. Unpubl. Ph. D. Thesis, R. Holloway, Univ. London, UK.

Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., Morris, J.D., Leeman, W.P., Harmon, R.S., 1994. The transition to potassic alkaline volcanism in Island Arcs: the Ringgit—Beser complex, East Java, Indonesia. J. Petrol. 35, 1557–1595.

Gertisser, R., Keller, J., 2003. Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J. Petrol. 44, 457–489.

Handley, H., 2006. Geochemical and Sr-Nd-Hf-O isotopic constraints on volcanic petrogenesis at the Sunda arc, Indonesia.

Handley, H.K., Blichert-Toft, J., Gertisser, R., Macpherson, C.G., Turner, S.P., Zaennudin, A., Abdurrachman, M., 2014. Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia. Geochim. Cosmochim. Acta 139, 205–226.

Kadar, D. and Sudijono, S., 1993. Peta geologi bersistem Indonesia lembar: Rembang 1509-1 & 4 skala 1: 100.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Kertapati, E.K., 2006. Studi Tektonik Daerah Muria untuk Seismic Hazard Assesment Keselamatan Pusat Listrik Reaktor Daya Ujung Lemahabang, Muria Jawa Tengah. Indonesia Geological Survey Institute Indonesia.

Kirchenbaur, M., Schuth, S., Barth, A.R., Luguet, A., König, S., Idrus, A., Garbe-Schönberg, D., Münker, C., 2022. Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java. Contrib. to Mineral. Petrol. 177, 1–25.

Latengke, V.C., Faiqi, I., Dewi, P., Nainggolan, E.N., 2019. Characteristics of Muria Vulkanism and Tectonic Impact at Development of Nuclear Reactor in Muria, Central Java, in: EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience and Engineering. European Association of Geoscientists & Engineers, pp. 1–5.

Le Bas, M.J., Le Maitre, R.W., Woolley, A.R., 1992. The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral. Petrol. 46, 1–22.

Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., 2005. Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.

Leterrier, J., Yuwono, Y.S., Soeria-Atmadja, R., Maury, R.C., 1990. Potassic volcanism in central Java and south Sulawesi, Indonesia. J. Southeast Asian Earth Sci. 4, 171–187.

Maccaferri, F., Rivalta, E., Keir, D., Acocella, V., 2014. Off-rift volcanism in rift zones determined by crustal unloading. Nat. Geosci. 7, 297–300.

Marin, J., Winarno, T., Mindasari, D., 2019. Mineralogy and Geochemistry Variation of Igneous Rocks from Ungaran and Muria Volcano and Its Processes related to Subduction Zone Magmatism of Sunda Arc, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12017.

McBirney, A.R., Serva, L., Guerra, M., Connor, C.B., 2003. Volcanic and seismic hazards at a proposed nuclear power site in central Java. J. Volcanol. Geotherm. Res. 126, 11–30.

Mulyaningsih, S., Bronto, S., Kusnaedi, A., Simon, I., Prasetyanto, I.W., 2008. Vulkanisme kompleks Gunung Patiayam di Kecamatan Jekulo, Kabupaten Kudus, Provinsi Jawa Tengah. Indones. J. Geosci. 3, 75–88.

Mulyaningsih, S., Sanyoto, S., 2012. Geologi Gunung Api Merapi; Sebagai Acuan Dalam Interpretasi Gunung Api Komposit Tersier di Daerah Gunung Gede-Imogiri Daerah Istimewa Yogyakarta, in: Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III. Institut Sains & Teknologi AKPRIND Yogyakarta, p. B-242.

Mulyaningsih, S., Shaban, G., 2020. Geochemistry of basaltic Merbabu volcanic rocks, Central Java, Indonesia. Indones. J. Geosci. 7.

Nicholls, I.A., Whitford, D.J., 1983. Potassium-rich volcanic rocks of the Muriah complex, Java, Indonesia: products of multiple magma sources? J. Volcanol. Geotherm. Res. 18, 337–359.

Pacey, A., Macpherson, C.G., McCaffrey, K.J.W., 2013. Linear volcanic segments in the central Sunda Arc, Indonesia, identified using Hough transform analysis: implications for arc lithosphere control upon volcano distribution. Earth Planet. Sci. Lett. 369, 24–33.

Platevoet, B., Elitok, Ö., Guillou, H., Bardintzeff, J.-M., Yagmurlu, F., Nomade, S., Poisson, A., Deniel, C., Özgür, N., 2014. Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük volcano, Isparta Angle, Turkey: Origin and evolution of the high-K alkaline series. J. Asian Earth Sci. 92, 53–76.

Pollard, D.D., Delaney, P.T., Duffield, W.A., Endo, E.T., Okamura, A.T., 1983. Surface deformation in volcanic rift zones, in: Developments in Geotectonics. Elsevier, pp. 541–584.

Schmincke, H.-U., 2004. Volcanism. Springer Science & Business Media.

Setijadji, L.D., Kajino, S., Imai, A., Watanabe, K., 2006. Cenozoic island arc magmatism in Java Island (Sunda Arc, Indonesia): Clues on relationships between geodynamics of volcanic centers and ore mineralization. Resour. Geol. 56, 267–292.

Soeria-Atmadja, R., Maury, R.C., Bellon, H., Pringgoprawiro, H., Polve, M., Priadi, B., 1994. Tertiary magmatic belts in Java. J. Southeast Asian Earth Sci. 9, 13–27.

Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London, Spec. Publ. 42, 313–345.

Suwarti, T. and Wikarno, S., 1992. Peta geologi lembar Kudus. Jawa, skala, 1(100.000), pp.45-67.

Usman, E., 2012. Tektonik dan Jalur Vulkanik Busur Belakang Bawean Muria Sebagai Pengontrol Pembentukan Cekungan Pati dan Potensi Hidrokarbon. Indones. J. Appl. Sci. 2.

Usman, E., Lugra, W., 2016. Tinjauan Geologi Kelautan Perairan Semenanjung Muria terhadap Rencana Tapak Konstruksi Pltn. J. Geol. Kelaut. 6.

Walker, G.P.L., 1999. Volcanic rift zones and their intrusion swarms. J. Volcanol. Geotherm. Res. 94, 21–34.

White, J.D.L., Ross, P.-S., 2011. Maar-diatreme volcanoes: a review. J. Volcanol. Geotherm. Res. 201, 1–29.

Wibowo, B., Mellawati, J., Susiati, H., 2011. Assesment of Muria geochemistry evolution and related to volcanic hazard to NPP site at Muria; Kajian evolusi geokimia dan kaitannya dengan tingkat bahaya gunung api Muria terhadap tapak PLTN Muria. J. Pengemb. Energi Nukl. 13.

Wibowo, H.E., Harijoko, A., Moktikanana, M.L.A., Abdillah, M.Y., 2022. Magma Evolution of Lasem and Senjong Volcanic Complex: High-K Magmatism in Sunda Arc, Indonesia. Indones. J. Geosci. 9, 131–145.

Zaim, Y., Delaune, M., 1990. Nouvelles données sur la stratigraphie et le milieu de sédimentation des formations volcano-sédimentaires quaternaires de la région de Patiayam (Java-Indonésie). Géodynamique 5, 135–150.

Downloads

Published

2022-06-30