Carbon Dioxide (CO2) Emissions Due to Motor Vehicle Movements in Pekanbaru City, Indonesia

Authors

  • Erza Guspita Sari Departement Urban and Planning, Faculty of Engineering, Universitas Islam Riau, Pekanbaru, Indonesia
  • Muhammad Sofwan Departement Urban and Planning, Faculty of Engineering, Universitas Islam Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.25299/jgeet.2021.6.4.7692

Keywords:

Land Use, Carbon Dioxide Emission (CO2), Vehicle Kilometer Traveler (VKT), Motor Vehicles, Travel Behavior, Emission Factors

Abstract

Land use has a very close relationship with transportation. Transportation is formed as a result of the interaction between land use and its support system. Good land use supported by good infrastructure will result in good movement as well. Accessibility is one of the supporting factors for good interaction between transportation and land use—the better the land use conditions in an area, the greater the movement in that area. However, the interaction between land use and transportation can cause one of the problems: the increase in carbon dioxide emissions due to the more significant movement of motorized vehicles. Motor vehicles are the most significant contributor to carbon dioxide (CO2) emissions in the world. The further the route traveled by motorized vehicles, the more carbon dioxide (CO2) emissions will increase. This study aims to analyze the average total emission of carbon dioxide (CO2) resulting from transportation activities in Pekanbaru City into two parts, namely: (1) Based on Travel Time (2) Based on the type of vehicle. Vehicle Kilometers of Travel (VKT) and Emission Factors are the primary data in calculating Carbon Dioxide (CO2) Emissions. The research area consists of 12 zones involving 1,342 households in Pekanbaru City. Based on travel time, 52% of community motorized vehicle movement activities are carried out in the morning. Private cars contribute 65% of carbon dioxide (CO2) emissions in Pekanbaru City based on the type of vehicle. This study found that a high number of motorized vehicles cannot be used as a benchmark that the resulting emissions will also be high. However, the emission of carbon dioxide (CO2) depends on the fuel consumption of each vehicle. The higher the fuel consumption, the higher the amount of carbon dioxide (CO2) emissions released by motorized vehicles.

Downloads

Download data is not yet available.

References

Badan Pendapatan Daerah Provinsi Riau, 2019. Jumlah Kendaraan Bermotor Tahun 2017-2019 di Kota Pekanbaru.

Badan Perencanaan Pembangunan Nasional, 2014. Pedoman Teknis Perhitungan Baseline Emisi Gas Rumah Kaca Sektor Berbasis Energi. Badan Perencanaan Pembangunan Nasional (BAPPENAS) Deputi Bidang Sumber Daya Alam dan Lingkungan Hidup, Jakarta, Indonesia, pp. 1–60.

Baek, J., Pride, D., 2014. On the income – nuclear energy – CO 2 emissions nexus revisited. Energy Econ. 43, 6–10.

Dodman, D., 2009. Environment and Urbanization inventories 21, 185–201.

Eboli, L., Forciniti, C., Mazzulla, G., 2012. Exploring Land Use and Transport Interaction through Structural Equation Modelling, in: Procedia Social and Behavioral Sciences. Elsevier, Italia, pp. 107–116.

Ehsani, M., Ahmadi, A., Fadai, D., 2016. Renewable and Sustainable Energy Reviews. Renew. Sustain. Energy Rev. 53, 1638–1648.

Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global Consequences of Land Use. Science (80-. ). 309, 570–575.

Gusnita, D., 2012. Pencemaran logam berat timbal (PB) di udara dan upaya penghapusan bensin bertimbal. J. Ber. Dirgant. 13, 95–101.

Intari, D.E., 2015. Karakteristik dan bangkitan perjalanan terhadap pusat perbelanjaan. Fondasi J. Tek. Sipil 4, 59–68.

Kamruzzaman, M., Hine, J., Yigitcanlar, T., 2015. Investigating the link between carbon dioxide emissions and transport-related social exclusion in rural Northern Ireland. Int. J. Environ. Sci. Technol. 12, 3463–3478.

Kementerian Energi dan Sumber Daya Mineral, 2017. Kajian Penggunaan Faktor Emisi Lokal ( Tier 2 ) dalam Kajian Inventarisasi GRK Sektor Energi, Edisi Pert. ed. Pusat Data dan Teknologi Informasi ESDM Kementrian Energi dan Sumber Daya Mineral, Jakarta, Indonesia.

Khisty, C.J., Lall, B.K., 2005. Dasar-dasar Rekayasa Transportasi Jilid 1, Edisi 3/Ji. ed. PT. Gelora Aksara Pratama.

Kusumawati, P.S., Tang, U.M., Nurhidayah, T., 2013. Hubungan Jumlah Kendaraan Bermotor, Odometer Kendaraan dan Tahun Pembuatan Kendaraan dengan Emisi CO2 di Kota Pekanbaru. J. Ilmu Lingkung. 7, 49–59.

Labib, S.M., Neema, M.N., Rahaman, Z., Patwary, S.H., Shakil, S.H., 2018. Carbon dioxide emission and bio-capacity indexing for transportation activities : A methodological development in determining the sustainability of vehicular transportation systems. J. Environ. Manage. 223, 57–73.

Li, J., 2011. Decoupling urban transport from GHG emissions in Indian cities-A critical review and perspectives. Energy Policy 39, 3503–3514.

Liu, Z., He, C., Zhou, Y., Impervious, Á.B.Á., 2014. How much of the world ’s land has been urbanized , really ? A hierarchical framework for avoiding confusion. Springer 763–771.

Nurdjanah, N., 2015. Emisi CO2 Akibat Kendaraan Bermotor di Kota Denpasar. J. Penelit. Transp. Darat 17, 1–14.

Pan, L., Yao, E., Yang, Y., 2016. Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J. Environ. Manage. 183, 510–520.

Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., Ali, A., 2021. Towards environmental Sustainability : Devolving the influence of carbon dioxide emission to population growth , climate change , Forestry , livestock and crops production in Pakistan 125, 1–11.

Sengkey, S.L., Jansen, F., Wallah, S., 2011. Tingkat Pencemaran Udara CO Akibat Lalu Lintas dengan Model Prediksi Polusi Udara Skala Mikro. J. Ilm. Media Eng. 1, 119–126.

Shaw, S., Xin, X., 2003. Integrated land use and transportation interaction : a temporal GIS exploratory data analysis approach. J. Transp. Geogr. 11, 103–115.

Siskos, P., Moysoglou, Y., 2019. Assessing the impacts of setting CO 2 emission targets on truck manufacturers : A model implementation and application for the EU. Transp. Res. Part A 125, 123–138.

Sohag, K., Begum, R.A., Abdullah, S.M.S., Jaafar, M., 2015. Dynamics of energy use , technological innovation , economic growth and trade openness in Malaysia. Energy 1–11.

Song, X., Yang, G., Yan, C., Duan, H., Liu, G., Zhu, Y., 2009. Driving forces behind land use and cover change in the Qinghai-Tibetan Plateau : a case study of the source region of the Yellow River , Qinghai Province , China. Env. Earth Sci 59, 793–801.

Tamin, O.Z., 2000. Perencanaan dan Pemodelan Transportasi, Edisi Kedu. ed, Perencanaan dan pemodelan transportasi. Institut Teknologi Bandung, Bandung, Indonesia.

Wegener, M., 2004. Overview Of Land Use Transport Models.

Wegener, M., Fürst, F., 1999. Land-Use Transport Interaction: State of the Art. Institut für Raumplanung Fakultät Raumplanung, Universität Dortmund.

Wu, H., Lin, A., Xing, X., Song, D., Li, Y., 2021. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Contents List. available Sci. Int. J. Appl. Earth Obs. Geoinf. 103, 1–13.

Zhu, Z., Xiong, C., Chen, X., He, X., Zhang, L., 2018. Integrating mesoscopic dynamic tra ffi c assignment with agent- based travel behavior models for cumulative land development impact analysis. Transp. Res. Part C 93, 446–462.

Downloads

Published

2021-12-30