The Transitional Gabbroic Rocks in Bayah Geological Complex, Western part of Java, Indonesia, Inferred from XRF, ICP-MS, and Microprobe Analysis

Authors

  • Aton Patonah Faculty of Geological Engineering, Padjadjaran University, Jatinangor, 45363, West Java, Indonesia
  • Haryadi Permana Research Center for Geotechnology LIPI, Jl Sangkuriang Bandung 40135, West Java, Indonesia
  • Ildrem Syafri Faculty of Geological Engineering, Padjadjaran University, Jatinangor, 45363, West Java, Indonesia

DOI:

https://doi.org/10.25299/jgeet.2021.6.4.7189

Keywords:

Bayah geological complex (BGC), Ciletuh melange complex (CMC), Gabbro, REE, Arc tectonic setting, Retrograde metamorphism

Abstract

Gabbro, is a fossil remnant of oceanic crust in western part of Java, found at Bayah Geological Complex (BGC) and Ciletuh Melange Complex (CMC), Indonesia. It has been studied by using petrographic, X-Ray Fluorescence (XRF), and inductively coupled plasma-mass spectrometry (ICP-MS) and mineralogical (microprobe) analyses. Mineral and geochemical composition of these rocks provide important clues to their origins since the rocks have been deformed and gone through auto metamorphism, beside they contain the economic mineral and or rare earth elements (REE). Gabbroic rocks in these two areas generally shows phaneritic to porphyritic texture, granular texture. These rocks in CMC are dominated by plagioclase (oligoclase to albite), hornblende, pyroxene, partly altered to tremolite, actinolite, chlorite, epidote, and sericite; meanwhile those of BGC dominantly consist of plagioclase, pyroxene, hornblende, some present of chlorite, actinolite, epidote and biotite as secondary minerals. In multi-element diagrams, gabbroic rocks in CMC show strong negative Sr and Zr, but positive Nb anomaly, while those of BGC show strong negative anomaly of Nb and Zr. In addition, based on rare earth elements (REE) diagrams, gabbroic rocks in CMC show depleted of light rare earth elements (LREE) with negative Eu anomaly, while gabbro’s in BGC show enrichment of LREE. These characteristics indicate that GBC’s and CMC’s gabbroic rocks came from different magma sources, one was formed by partial melting of depleted upper mantle reservoir while the other one was formed by partial melting of mantle wedge with active participation of subducted slab in an arc tectonic setting, suprasubduction zone which were formed at started Upper Cretaceous to Paleogene, and they had retrograde metamorphism to epidote amphibolite facies.

Downloads

Download data is not yet available.

References

Asikin, S., 1974. Evolusi geologi Jawa Tengah dan sekitarnya ditinjau dari segi tektonik dunia yang baru. ITB.

Blundy, J.D., Holand, T.J.B., 1990. Calcic amphibole equlibria and a new amphibole - plagioclase geothermometer. Massachusetts Institute of Technology, USA, pp. 208-213.

Cox, K.G., Hawkesworth, C.J., O’Nions, R.K., Appleton, J.D., 1976. Isotopic evidence for the derivation of some Roman region volcanics from anomalously enriched mantle. Contrib. to Mineral. Petrol. 56, pp.173–180.

Davidson, J., 1986. Isotopic and trace element constraint on the petrogenesis of subduction related lavas from Martinique, Lesser Antilles. J. Geophys. Res 91, pp. 5943–62.

Dey, A., Hussain, M.F., Barman, M.N., 2018. Geoscience frontiers geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite , India : Implications for petrogenesis. Geosci. Front. 9, pp. 517–529.

El-ela, Abu., Fauzy. F., 1997. Geochemistry of an island-arc plutonic suite : Wadi Dabr intrusive complex , Eastern Desert , Egypt 24, pp.473-496.

Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springler-Verlag.358p

Hamilton, W., 1979. Tectonics of the Indonesian Region, US Geological Survey Professional Paper 1078. Washington.

Irvine, T.., Baragar, W.R.A., 1971. A Guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, pp. 523–548.

Kakar, I.., Khalid, M., Khan, M., Kasi, A.., Manan, R.., 2013. Petrology and geochemistry of gabbros from the Muslim Bagh Ophiolite; Implications for their petrogenesis and tectonic setting. J. Himal. Earth Sci. 46, pp. 19–30.

Leake, B.E., Wooley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Laird, J., Mandarino, J., 1997. Nomenclature of amphiboles. Rep. subcommitee amphiboles Int. Mineral. Assoc. Comm. new Mineral and mineral names, pp. 295–321.

Martodjojo, A., Suparka, S., Hadiwisastra, S., 1977. Status Formasi Ciletuh dalam evolusi Jawa Barat, in: Proc. Ikatan Ahli Geologi Indonesia, pp. 1–13.

Monnier, C., Girardeau, J., Pubellier, M., Polvfi, M., Permana, H., Bellon, H., 1999. Petrology and geochemistry of the Cyclops ophiolites .( Irian Jaya , East Indonesia ): consequences for the Cenozoic evolution of the north Australian margin, pp. 1–28.

Noeradi, D., 1994. Contribution A L’ etude geologique D’une partie occidentale de L’Ile de Java – Indonisie. Stratigraphie, analyse structurale et etude quantitative de la subsidence des bassins sedimentaires Tertiares. approache de la geodynamique D’une marge continentale.

Parkinson, C.., Miyazaki, K., Wakita, K., Barber, A.., Carswell, D.., 1998. An overview and tectonic synthesis of the Pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. Isl. Arc 7, pp. 184–200.

Patonah, A., Permana, H., 2018. Basement characteristic Western Part of Java, Indonesia ; case study in Bayah Area, Banten Province. Int. J. Adv. Sci. Eng. Inf. Technol. 8, pp. 2135–2141.

Patonah, A., Permana, H., 2010. Petrologi amfibolit komplek melange Ciletuh , Jawa Barat. Bul. Sci. Contrib. 8, pp. 69–77.

Pearce, J.., 1982. Trace Element characteristics of lavas from destructive plate boundaries. In : Thorpe, R.S. (Ed), Andesites.

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, pp. 14–48.

Prihatmoko, S., Idrus, A., 2020. Low-sulfidation epithermal gold deposits in Java, Indonesia: Characteristics and

linkage to the volcano-tectonic setting. Ore Geol. Rev. 121, 103490.

Rosana, M.F., Yuningsih, E.T., Saragih, K.D., Ikhram, R., Ardiansyah, N., 2015. Petrologi Batuan Ofiolit Daerah Sodongparat, Kawasan Ciletuh, Sukabumi. Bull. Sci. Contrib. 13, pp. 221–230.

Satyana, A. H, 2014. New consideration on the Crestaceous subduction zone of Ciletuh-Luk Ulo-Bayat-Meratus: Implications for southeast sundaland petroleum geology, in: Proceedings, Indonesian Petroleum Association, Thirty-Eight Annual Convention & Exhibition, pp. 1–41.

Satyana, Awang H, 2014. Tectonic evolution of Cretaceous convergence of Southeast Sundaland: A new synthesis and its implications on petroleum geology. Ikat. Ahli Geol. Indonesia, pp. 1–28.

Saunders, A.., Norry, M.., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. J. Petrol. Special Li, pp. 415–445.

Schiller, D.M., Garrard, R.A., Prasetyo, L., 1991. Eocene Submarine Fan Sedimentation in Southwest Java, in: Proceeding Indonesian Petroleum Association, pp. 125–181.

Slovenec, D., Lugović, B., 2008. Amphibole gabbroic rocks from the Mt Medvednica ophiolite mélange ( NW Croatia ): geochemistry and tectonic setting, pp. 277–293.

Soekamto, R., 1975. Geological Map of the Jampang and Balekambang Quadrangles, Java, Scale 1 : 100,000. Bandung.

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, pp. 313–345.

Thayib, E., L, S.E., Siswoyo, S, P., 1977. The Status of the melange complex in Ciletuh area, Southwest Java., in: Proc.of the 6th IPA Convention, pp. 1–8.

Wakita, K., 2000. Cretaceous accretionary–collision complexes in central Indonesia. J. Asian Earth Sci. 18, pp. 739–749.

Wallin, E.T., Metcalf, R. V., 1998. Supra-subduction zone ophiolite formed in an extensional forearc: Trinity terrane, Klamath Mountains, California. J. Geol. 106, pp. 591–608.

Wilson, M., 1989. Igneous Petrogenesis. A global tectonic approach. Unwin Hyman, London, 566p.

Zindler, A., H, S., R, B., 1984. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogenety. Earth Planet 70, pp. 175–95.

Downloads

Published

2021-12-28