Raster-based Model for Mass Movement in Malang Regency, East Java, Indonesia.

Authors

  • Sandy Budi Wibowo Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Franck Lavigne Institute de Géographie, Université Paris 1 Panthéon-Sorbonne, Paris, France.
  • Siddiq Luqman Rifai Cartography and Remote Sensing Study Program, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Rani Rahim Suryandari Cartography and Remote Sensing Study Program, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Idea Wening Nurani Department of Development Geography, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • St. Dwi Ermawan Danas Putra Laboratory of Geographic Information System, Faculty of Geography, Universitas Gadjah Mada
  • Wahyu Widi Pamungkas Laboratory of Geographic Information System, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia.

DOI:

https://doi.org/10.25299/jgeet.2020.5.4.4737

Keywords:

Geo-Information Technology, raster-based models, Landslides, mass movements

Abstract

Strengthening geospatial technology is very important in order to support disaster mitigation strategy, to manage vulnerable communities and to protectcritical environments. The main challenge in identifying disaster characteristics such as mass movements is the lack of direct observation during the event because it is too dangerous for researchers. Geo-Information Technology as a product of Geographic Information Science can be used as a solution in order to model the characteristics of mass movements. The purpose of this study is focused on identifying landslide processes from point of view ofraster-based model. The method of thisresearch emphasizes dynamic landslide model derived from timeseries raster calculation using MassMov2D algorithm. The geographic database that was built for spatial modeling comes from pedogeomorphological and Remote Sensing survey outputs, especially topographic data, landforms and soil physical properties. The result shows that the relationship between pixels (neighborhood) is determined by the topology of the energy gradient line direction which allowsto transfer the value between each pixel.The movement of landslide material starts from the toe. This decreases the stability of the landslide material in the main body of the landslide and generate progressive erosion.The raster-based model can finally reconstruct and identify the stages of initiation, transport and deposition landslide material.

Downloads

Download data is not yet available.

References

Adamska-Szatko, M., Bała, J., 2010.Surface dynamic process simulation with the use of Cellular Automata. Acta Physica Polonica B Proceedings Supplement. 3 (2), p. 391-398.

Beguería, S., Van Asch, Th. W. J., Malet, J.-P., Gröndahl, S., 2009. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat. Hazards Earth Syst. Sci., 9 (6), p. 1897-1909.

Bui, D.T., Tsangaratos, P., Nguyen, V.-T., Liem, N.V., Trinh P.T. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188, 104426.

Cassel, M., Piégay, H., Lavé, J., Vaudor, L., Hadmoko, D.S., Wibowo, S.B., Lavigne, F. 2018. Evaluating a 2D image-based computerized approach for measuring riverine pebble roundness. Geomorphology. 311, 143-157.

Chen, Z., Yang, P., Liu, H., Zhang, W., Wu, C. 2019. Characteristics analysis of granular landslide using shaking table model test. Soil Dynamics and Earthquake Engineering. 126, 105761.

Dao, D.V., Jaafari, A., Bayat, M., Mafi-Gholami, D., Qi, C., Moayedi, H., Phong, T.V., Ly, H.-B., Le, T.T., Trinh, P.T., Luu, C., Quoc, N.K., Thanh, B.N., Pham, B.T. 2020. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA. 188, 104451.

Gob, F., Gautier, E., Virmoux, C., Grancher, D., Tamisier, V., Primanda, K.W., Wibowo, S.B., Sarrazin, C., De Bélizal, E., Ville, A., Lavigne, F. 2016. River responses to the 2010 major eruption of the Merapi volcano, Central Java, Indonesia. Geomorphology, 273, 244 - 257.

He, Q., Shahabi, H., Shirzadi, A., Li, S., Chen, W., Wang, N., Chai, H., Bian, H., Ma, J., Chen, Y., Wang, X., Chapi, K., Ahmad, B.B. 2019. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of The Total Environment. 6631, 1-15.

Hungr, O., McDougall, S., 2009. Two numerical models for landslide dynamic analysis. Computers & Geosciences. 35 (5), p. 978-992.

Katz, O., Aharonov, E., 2006.Landslides in vibrating sand-box : what controls types of slope-failure and frequency magnitude relations?. Earth and Planetary Science Letters. 247 (3-4), p. 280-294.

Li, J., Cao, Z., Cui, Y., Borthwick, A.G.L. 2020. Barrier lake formation due to landslide impacting a river: A numerical study using a double layer-averaged two-phase flow model. Applied Mathematical Modelling. 80, 574-601.

Lin, C., Pastor, M., Li, T., Liu, X., Lin, C., Qi, H., Sheng, T. 2019. A PFE/IE – SPH joint approach to model landslides from initiation to propagation. Computers and Geotechnics. 114, 103153.

Marin, R.J., Velásquez, M. F. 2020. Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides. Geomorphology. 351, 106976.

Ran, Q., Hong, Y., Li, W., Gao J. 2018. A modelling study of rainfall-induced shallow landslide mechanisms under different rainfall characteristics. Journal of Hydrology. 563, 790-801.

Sameen, M.I., Sarkar R., Pradhan B., Drukpa, D., Alamri, A.M., Park, H-J. 2020. Landslide spatial modelling using unsupervised factor optimisation and regularised greedy forests. Computers & Geosciences. 134, 104336.

Samodra, G., Hadmoko, D.S., Wicaksono, G.N., Adi, I.P., Yudinugroho, M., Wibowo, S.B., Suryatmojo, H., Purwanto, T.H., Widartono, B.S., Lavigne, F. 2018. The March 25 and 29, 2016 landslide-induced debris flow at Clapar, Banjarnegara, Central Java. Landslides. 15 (5), 985-993.

Sarma, C.P., Dey, A., Krishna A., M. 2020. Influence of digital elevation models on the simulation of rainfall-induced landslides in the hillslopes of Guwahati, India. Engineering Geology. 268, 105523.

Shen, W., Li, T., Li, P., Berti, M., Shen, Y., Guo, J. 2020. A two-layer numerical model for simulating the frontal plowing phenomenon of flow-like landslides. Engineering Geology. 2594, 105168.

Shirzadi, A., Solaimani, K., Roshan, M.H., Kavian, A., Chapi, K., Shahabi, H., Keesstra, S., Ahmad, B.B., Bui, D.T. 2019. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. CATENA. 178, 172-188.

Wang, Y., Feng, L., Li, S., Ren, F., Du, Q., 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188, 104425.

Wang, S., Zhang, K., van Beek, L.P.H., Tian, X., Bogaard T.A. 2020. Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling & Software. 124, 104607.

Weidner, L., DePrekel, K., Oommen, T., Vitton, S. 2019. Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling. Engineering Geology. 259, 105169.

Ville A., Lavigne F., Virmoux C., Brunstein D., De Bélizal E., Wibowo S. B., Hadmoko D. S. 2015. Geomorphological evolution of the Gendol valley following the October 2010 eruption of Mt Merapi (Java, Indonesia), Géomorphologie : relief, processus, environnement, 21 (3), 235-250.

Wibowo, S.B.. 2010. Proposition d’un nouveau paramètre pour mesurer des glissements de terrain : la durée entre le point de saturation du sol et la rupture. Université Paris 1 Panthéon-Sorbonne. 73p.

Wibowo, S.B. 2010. Utilisation des classifications d’Oldeman et de Schmidt-Ferguson pour l'aptitude culturale des sols à Batu, Indonésie. In S. Khan, H.G.H Savenije, S. Demuth, P. Hubert (dir.). Hydrocomplexity: new tools for solving wicked water problems. IAHS publication, 338, 181-182

Wibowo S.B., Widianto, Sudarto. 2014. Influence of horizon boundary declivity toward duration of landslides generation on soil with medium and fine texture domination (in Indonesian). Jurnal Tanah danSumberdayaLahan, 1 (1), 64-71

Wibowo, S.B., Lavigne, F., Mourot, P., Métaxian, J-P., Zeghdoudi, M., Virmoux, C., Sukatja, C.B, Hadmoko, D.S., Mutaqin, B.W. 2015. Coupling between Video and Seismic Data Analysis for the Study of Lahar Dynamics at Merapi Volcano, Indonesia. Géomorphologie : relief, processus, environnement. 21(3), 251-266.

Wibowo S.B. 2016. Approches Multiscalaires de l’Érosion du Volcan Merapi, Indonésie: Contribution à la compréhension du déclenchement et de la dynamique des lahars. Université Paris 1 Panthéon-Sorbonne. 293p.

Wibowo, S.B., Nurani, I.W. 2019. Improving geoinformation technology by incorporating local participation. Proceedings of SPIE - The International Society for Optical Engineering. 113110C.

Yu, M.-L., Lee, C.-H. 2019. Multi-phase-flow modeling of underwater landslides on an inclined plane and consequently generated waves. Advances in Water Resources. 133, 103421.

Downloads

Published

2020-12-01