Relocation Study of Flores Sea Hypocenter (Mw = 7.3) Based on Single Station Estimation Using ObsPy

Authors

  • Azmi Khusnani Physics Education, Universitas Muhammadiyah Maumere, Maumere, Indonesia
  • Ade Anggraini Geoscience Research Group, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Adi Jufriansah Physics Education, Universitas Muhammadiyah Maumere, Maumere, Indonesia
  • Zulfakriza Zulfakriza Global Geophysics Research Group, Institut Teknologi Bandung, Bandung, Indonesia
  • Yudhiakto Pramudya Master of Physics Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  • Margiono Geophysics Station, Meteorological, Climatological, and Geophysical Agency, Kupang, Indonesia
  • Konsenius Wiran Wae Physics Education, Universitas Muhammadiyah Maumere, Maumere, Indonesia

DOI:

https://doi.org/10.25299/jgeet.2024.9.2.14503

Keywords:

Hypocenter, Flores Sea, ObsPy, Single Stasiun, IRIS

Abstract

One area in Indonesia that is prone to disasters is the Flores Sea area, which has the potential for earthquakes to trigger tsunamis. This is due to the location of Flores, which is in a subduction zone that originates from the collision of the Indo-Australian (South) and Eurasian plates. Inaccuracies in earthquake locations are influenced by differences in residual travel time values, mathematical solutions to location problems, and inaccuracies in the seismic velocity model used. The accuracy of determining the hypocenter of an earthquake influences the location of the earthquake source, which will later be used as a reference in appropriate earthquake disaster mitigation planning. Based on this, an analysis of earthquake hypocenter data is needed, so it is important to carry out research. This research aims to relocate the hypocenter using ObsPy with a single station. The results obtained show that the Python package, namely ObsPy, can carry out data retrieval commands through filtering, detrending, normalisation, and determining data request parameters, such as the start and end times of the desired data, location, network, and data type. This research contributes to the field of seismology because the process of determining the hypocenter requires a relatively short time. Apart from that, the accuracy obtained also provides accurate values.

Downloads

Download data is not yet available.

References

Beckers, J., Lay, T., 1995. Very broadband seismic analysis of the 1992 Flores, Indonesia, earthquake (Mw = 7.9). J Geophys Res Solid Earth 100, 18179–18193.

Braun, T., Frigo, B., Chiaia, B., Bartelt, P., Famiani, D., Wassermann, J., 2020. Seismic signature of the deadly snow avalanche of January 18, 2017, at Rigopiano (Italy). Sci Rep 10, 18563.

Burud, N., Kishen, J.C., 2021. Damage detection using wavelet entropy of acoustic emission waveforms in concrete under flexure. Struct Health Monit 20, 2461–2475.

Chamberlain, C.J., Hopp, C.J., Boese, C.M., Warren‐Smith, E., Chambers, D., Chu, S.X., Michailos, K., Townend, J., 2018. EQcorrscan: Repeating and Near‐Repeating Earthquake Detection and Analysis in Python. Seismological Research Letters 89, 173–181.

Cihad, S., Al-Heety, E., Abdulnaby, W., 2023. Relocation and Magnitude for Earthquakes in the Outer Arabian Platform of Iraq. Iraqi Geological Journal 56, 198–215.

Daniels, C., Peng, Z., 2023. A 15-year-Long catalog of seismicity in the Eastern Tennessee Seismic Zone (ETSZ) using matched filter detection. Earthquake Research Advances 3, 100198.

Earle, P.S., Shearer, P.M., 1994. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America 84, 366–376.

Felix, R.P., Hubbard, J.A., Bradley, K.E., Lythgoe, K.H., Li, L., Switzer, A.D., 2022. Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust. Natural Hazards and Earth System Sciences 22, 1665–1682.

Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., Socco, V., 2018. Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering 16, 2367–2420.

Gao, D., Kao, H., Wang, B., 2021. Misconception of Waveform Similarity in the Identification of Repeating Earthquakes. Geophys Res Lett 48.

Hadi, A., Brotopuspito, K., Pramumijoyo, S., Hardiyatmo, H., 2018. Regional Landslide Potential Mapping in Earthquake-Prone Areas of Kepahiang Regency, Bengkulu Province, Indonesia. Geosciences (Basel) 8, 219.

Handayani, L., 2020. Seismic Hazard Analysis of Maumere, Flores: a Review of the Earthquake Sources, in: Proceedings of the Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia. EAI.

Hosseini, K., Sigloch, K., 2017. ObspyDMT: a Python toolbox for retrieving and processing large seismological data sets. Solid Earth 8, 1047–1070.

Jafari, M., Aflaki, M., Mousavi, Z., Walpersdorf, A., Motaghi, K., 2023. Coseismic and postseismic characteristics of the 2021 Ganaveh earthquake along the Zagros foredeep fault based on InSAR data. Geophys J Int.

Jufriansah, A., Anggraini, A., Zulfakriza, Z., Khusnani, A., Pramudya, Y., 2023a. Forecast earthquake precursor in the Flores Sea. Indonesian Journal of Electrical Engineering and Computer Science 32, 1825.

Jufriansah, A., Khusnani, A., Pramudya, Y., Afriyanto, M., 2023b. Comparison of aftershock behavior of the flores sea 12 december 1992 and 14 december 2021. Journal of Physics: Theories and Applications 7, 65-74.

Jufriansah, A., Pramudya, Y., Khusnani, A., Saputra, S., 2021. Analysis of Earthquake Activity in Indonesia by Clustering Method. Journal of Physics: Theories and Applications 5, 92.

Khusnani, A., Jufriansah, A., Afriyanto, M., 2022. Utilization of Seismic Data as a Tsunami Vulnerability Review. Indonesian Review of Physics 5, 66–72.

Khusnani, A., Jufriansah, A., Welly, O., Thalo, J., 2023. Tsunami event in Flores: literature review. Journal of Physics: Theories and Applications J. Phys.: Theor. Appl 7, 139–151.

Kiswanti, S., Palupi, I.R., Raharjo, W., Arwa, F.Y., Dwiyanti, N.E., 2021. The Study of Automatic Picking of P and S Wave Arrival and Identification of Earthquake Sequence Pattern using Scalogram in Obspy (Python). IOP Conf Ser Earth Environ Sci 873, 012014.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., Wassermann, J., 2015. ObsPy: a bridge for seismology into the scientific Python ecosystem. Comput Sci Discov 8, 014003.

Lomax, A., Savvaidis, A., 2022. High‐Precision Earthquake Location Using Source‐Specific Station Terms and Inter‐Event Waveform Similarity. J Geophys Res Solid Earth 127.

Lythgoe, K., Muzli, M., Bradley, K., Wang, T., Nugraha, A.D., Zulfakriza, Z., Widiyantoro, S., Wei, S., 2021. Thermal squeezing of the seismogenic zone controlled rupture of the volcano-rooted Flores Thrust. Sci Adv 7.

Maneno, R., Sentosa, B.J., Rachman, G., 2019. Relocation Of Earthquake Hypocenter In The Flores Region Using Hypo71. IPTEK The Journal of Engineering 5.

Megies, T., Beyreuther, M., Barsch, R., Krischer, L., Wassermann, J., 2011. ObsPy – What can it do for data centers and observatories? Annals of Geophysics 54.

Mousavi, S., Hejrani, B., Miller, M.S., Salmon, M., 2023. Hypocenter, Fault Plane, and Rupture Characterization of Australian Earthquakes: Application to the September 2021 Mw 5.9 Woods Point Earthquake. Seismological Research Letters.

Priyambada, F.R., Nugraha, A.D., Supendi, P., 2022. Hypocenter Determination using a Non-Linear Method in Bali, Lombok, and Nusa Tenggara Regions: Preliminary Result. J Phys Conf Ser 2243, 012008.

Ramdhan, M., Priyobudi, Mursityanto, A., Palgunadi, K.H., Daryono, 2021. Analysis of M 5.3 Sumbawa, Indonesia earthquake 2020 and its aftershocks based on hypocenter relocation from BMKG seismic stations. IOP Conf Ser Earth Environ Sci 873, 012070.

Rincon-Yanez, D., De Lauro, E., Petrosino, S., Senatore, S., Falanga, M., 2022. Identifying the Fingerprint of a Volcano in the Background Seismic Noise from Machine Learning-Based Approach. Applied Sciences 12, 6835.

Rosid, M.S., Widyarta, R., Karima, T., Wijaya, S.K., Rohadi, S., 2020. Fault Plane Estimation Through Hypocentres Distribution of the July-August 2018 Lombok Earthquakes Relocated by using Double Difference Method. IOP Conf Ser Mater Sci Eng 854, 012053.

Salvermoser, J., Hadziioannou, C., Hable, S., Krischer, L., Chow, B., Ramos, C., Wassermann, J., Schreiber, U., Gebauer, A., Igel, H., 2017. An Event Database for Rotational Seismology. Seismological Research Letters 88, 935–941.

Sasmi, A.T., Nugraha, A.D., Muzli, M., Widiyantoro, S., Zulfakriza, Z., Wei, S., Sahara, D.P., Riyanto, A., Puspito, N.T., Priyono, A., Greenfield, T., Afif, H., Supendi, P., Daryono, D., Ardianto, A., Syahbana, D.K., Husni, Y.M., Prabowo, B.S., Narotama Sarjan, A.F., 2020. Hypocenter and Magnitude Analysis of Aftershocks of the 2018 Lombok, Indonesia, Earthquakes Using Local Seismographic Networks. Seismological Research Letters 91, 2152–2162.

Saygin, E., Cummins, P.R., Lumley, D., 2017. Retrieval of the P wave reflectivity response from autocorrelation of seismic noise: Jakarta Basin, Indonesia. Geophys Res Lett 44, 792–799.

Supendi, P., Rawlinson, N., Prayitno, B.S., Widiyantoro, S., Simanjuntak, A., Palgunadi, K.H., Kurniawan, A., Marliyani, G.I., Nugraha, A.D., Daryono, D., Anugrah, S.D., Fatchurochman, I., Gunawan, M.T., Sadly, M., Adi, S.P., Karnawati, D., Arimuko, A., 2022. The Kalaotoa Fault: A Newly Identified Fault that Generated the Mw 7.3 Flores Sea Earthquake. The Seismic Record 2, 176–185.

Turner, R.J., Latto, R.B., Reading, A.M., 2021. An ObsPy library for event detection and seismic attribute calculation: preparing waveforms for automated analysis.

Yin, J., Denolle, M.A., Yao, H., 2018. Spatial and Temporal Evolution of Earthquake Dynamics: Case Study of the Mw 8.3 Illapel Earthquake, Chile. J Geophys Res Solid Earth 123, 344–367.

Downloads

Published

2024-06-29