Petrochemistry of Ultramafic Rock in Baula - Pomalaa Ophiolite Complex, Southeast Sulawesi, Indonesia

Authors

  • Rio Irhan Mais Cendrajaya Geological Engineering Halu Oleo University
  • Laode Ihksan Juarsan Geophysics Engineering Halu Oleo University
  • Masri Geological Engineering Halu Oleo University
  • Al Rubaiyn Geophysics Engineering Halu Oleo University
  • Syahrul Mining Engineering Universitas Sebelas November Kolaka
  • Neni Geological Engineering Halu Oleo University
  • Suci Ramadani Geological Engineering Halu Oleo University
  • Hasria Geological Engineering Halu Oleo University

DOI:

https://doi.org/10.25299/jgeet.2024.9.1.14491

Keywords:

pyroxene lamella, geothermometer, olivin-spinel coexisting, MORB peridotite, Kolaka

Abstract

Baula and Pomalaa Ophiolitic Complexes are part of East Sulawesi Ophiolite (ESO). The ultramafic rocks in the Baula and Pomalaa Ophiolite Complex mainly is peridotite and consist of harzburgite, lherzolite and olivine websterite, mostly serpentinized. Chemical and petrological research has focused on minerals, such as olivine, pyroxene, and spinel. This study examines the tectonic setting and temperature of ultramafic rock formation. Twelve ultramafic rock samples were examined using geothermometers made of pyroxene, petrographic examination, and coexisting olivine and spinel analyses. SEM and petrographic analysis of pyroxene lamellae and mylonite-ultramylonite structures allowed for the measurement of the geothermometer of ultramafic rocks. Using SEM-EDS, the coexistence of olivine and spinel was analyzed to determine the type of ultramafic tectonic setting. In the coexistence of olivine and spinel, olivine and spinel oxide compounds as tectonic setting markers in the form of Fo and Cr# values. Ultramafic rocks have different temperature levels, based on pyroxene thermometer, and the first one starts at a high temperature of 1000-1200ºC. It is characterized by thin, elongated augite lamellae. Instead, large lamellae characterize augite at medium temperatures (800–1000ºC). Irregular, anhedral, and broader forms of enstatite lamellae are typical of low temperatures (500–800ºC). Different generations of exsolution lamellae indicate that magma cooling was gradual. The distribution of #Fo ranged from 0.87 to 0.92, and Cr# values ranged from 0.13-0.19. According to coexisting olivine and spinel analysis. On the Olivine-Spinel Mantle Array (OSMA), the Fo and Cr# plot indicates that the peridotites tectonic setting was from the ocean floor and the magmatism was from MORB (Mid Oceanic Ridge Basalt). The Al2O3 vs. TiO2 pattern in spinel lherzolite also similar with Ampana and Kabaena peridotites magmatism.

Downloads

Download data is not yet available.

References

Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y.-I. & Hisada, K.-i. 2008. Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: Implications for its origin and hydration process. Island Arc, 17(4). 485-501.

Burnley, P. C., Cline, C. J. & Drue, A. 2013. Kinking in Mg2GeO4 olivine: An EBSD study. American Mineralogist, 98(5-6). 927-931.

Drue, A. G. 2011. Microstructural characterization of kinked germanate olivine grains. Theses, University of Nevada.

Frost, B. R., Evans, K. A., Swapp, S. M., Beard, J. S. & Mothersole, F. E. 2013. The process of serpentinization in dunite from New Caledonia. Lithos, 178. 24-39.

Gong, X.-H., Shi, R.-D., Griffin, W. L., Huang, Q.-S., Xiong, Q., Chen, S.-S., Zhang, M. & O'Reilly, S. Y. 2016. Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos, 262. 11-26.

Hamilton, W. B. 1979. Tectonics of the Indonesian Region (Report No. 1078), Professional Paper, U.S. Govt. Print. Off. 345 p.

Husein, S., Novian, M. I. & Barianto, D. H. 2014. Geological structures and tectonic reconstruction of Luwuk, East Sulawesi Proceedings, Indonesian Petroleum Association: Thirty-Eight Annual Convention & Exhbition, Jakarta, Indonesian Petroleum Association. IPA 14-G-137.

Jaya, R. I. M. C. 2017. Studi petrogenesis dan mineralisasi Kompleks Ofiolit Baula, Kolaka, Sulawesi Tenggara. Thesis, Institut Teknologi Bandung.

Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C. D. & Ishikawa, A. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392(1-4). 55-83.

Kamenetsky, V. S., Crawford, A. J. & Meffre, S. 2001. Factors Controlling Chemistry of Magmatic Spinel: an Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4). 655-671.

Koizumi, T., Tsunogae, T., Santosh, M., Tsutsumi, Y., Chetty, T. R. K. & Saitoh, Y. 2014. Petrology and zircon U–Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in southern India. Journal of Asian Earth Sciences, 95. 51-64.

Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist, 68(5-6). 477-493.

Lindsley, D. H. & Andersen, D. J. 2012. A two‐pyroxene thermometer. Journal of Geophysical Research: Solid Earth, 88(S02). A887-A906.

Matysiak, A. K. & Trepmann, C. A. 2015. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation. Tectonics, 34(12). 2514-2533.

Maulana, A., Christy, A. G. & Ellis, D. J. 2015. Petrology, geochemistry and tectonic significance of serpentinized ultramafic rocks from the South Arm of Sulawesi, Indonesia. Geochemistry, 75(1). 73-87.

Monnier, C., Girardeau, J., Maury, R. C. & Cotten, J. 1995. Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology, 23(9). 851-854.

Olfindo, V. S. V., Payot, B. D., Valera, G. T. V. & Arai, S. 2020. Petrogenesis of heterogeneous mantle peridotites with Ni-rich olivine from the Pujada Ophiolite, Philippines. Journal of Asian Earth Sciences: X, 4.

Parkinson, C. 1998. Emplacement of the East Sulawesi Ophiolite: evidence from subophiolite metamorphic rocks. Journal of Asian Earth Sciences, 16(1). 13-28.

Payot, B., Arai, S., Yoshikawa, M., Tamura, A., Okuno, M. & Rivera, D. 2018. Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines. Minerals, 8(11).

Pearce, J. A., Lippard, S. J. & Roberts, S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1). 77-94.

Pittarello, L., McKibbin, S., Yamaguchi, A., Ji, G., Schryvers, D., Debaille, V. & Claeys, P. 2019. Two generations of exsolution lamellae in pyroxene from Asuka 09545: Clues to the thermal evolution of silicates in mesosiderite. American Mineralogist, 104(11). 1663-1672.

Poli, S. & Schmidt, M. W. 2002. Petrology of Subducted Slabs. Annual Review of Earth and Planetary Sciences, 30(1). 207-235.

Rajesh, H. M. 2006. Progressive or continual exsolution in pyroxenes: an indicator of polybaric igneous crystallization for the Perinthatta anorthositic gabbro, northern Kerala, southwestern India. Journal of Asian Earth Sciences, 26(5). 541-553.

Ray, D., Banerjee, R., Iyer, S. D. & Mukhopadhyay, S. 2010. A New Report of erpentinites from Northern Central Indian Ridge (at 6°S)-An Implication for Hydrothermal Activity. Acta Geologica Sinica - English Edition, 82(6). 1213-1222.

Simandjuntak, T. O., Surono & Sukido 1993. Peta Geologi Lembar Kolaka, Sulawesi, Bandung, Pusat Penelitian dan Pengembangan Geologi.p.

Streckeisen, A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1). 1-33.

Surono 2013. Geologi Lengan Tenggara Sulawesi, Bandung, Badan Geologi. 201 p.

Surono & Hartono, U. 2013. Geologi Sulawesi, Jakarta, LIPI Press. 352 p.

Syahrul. 2017. Studi Paragenesis dan Mineralisasi kompleks Batuan Ultramafik daerah Sopura, Kabupaten Kolaka, Provinsi Sulawesi Tenggara. Theses, Institut Teknologi Bandung.

van Zuidam, R. A. 1986. Aerial photo-interpretation in terrain analysis and geomorphologic mapping, Netherland, Publisher The Hague.p.

Whitney, D. L. & Evans, B. W. 2009. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1). 185-187.

Yellappa, T., Koizumi, T. & Tsunogae, T. 2021. Geochemical constrains on pyroxenites from Aniyapuram Mafic–Ultramafic Complex, Cauvery Suture Zone, southern India: Suprasubduction zone origin. Journal of Earth System Science, 130(1).

Zeng, Z., Wang, Q., Wang, X., Chen, S., Yin, X. & Li, Z. 2012. Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E: Implications for magma source and seawater alteration. Journal of Earth System Science, 121(5). 1317-1336.

Downloads

Published

2024-03-28

Most read articles by the same author(s)