A Response of Water Temperature to Wind Speed and Air Temperature in Lake Laut Tawar, Aceh Province, Indonesia

Authors

  • Saiful Adhar Program Study of Aquaculture, Agriculture Faculty, Universitas Malikussaleh, Muara Batu, Aceh Utara, 24355, Indonesia.
  • Mainisa Program Study of Aquaculture, Agriculture Faculty, Universitas Malikussaleh, Muara Batu, Aceh Utara, 24355, Indonesia.
  • Yudho Andika Program Study of Marine Science, Agriculture Faculty, Universitas Malikussaleh, Muara Batu, Aceh Utara, 24355, Indonesia.

DOI:

https://doi.org/10.25299/jgeet.2024.9.3.14469

Keywords:

Air Pressure, Climate Factors, Relationship Model, Regression, Sunlight Intensity

Abstract

Changes in water temperature impact the dynamics of lake ecosystems. Changing climate factors, including wind speed and air temperature, influence the water temperature of lakes. This research aims to analyze the response of water temperature to wind speed and air temperature in Lake Laut Tawar. Observations were conducted from August to September 2023, with a sampling frequency of every two weeks. The results revealed that water temperature, wind speed, and air temperature in Lake Laut Tawar fluctuated according to the presence of light, namely day and night factors. Variations in sunlight intensity lead to hourly fluctuations in air temperatures, while wind speeds vary hourly due to changes in air pressure, consequently resulting in hourly variations in water temperature as well. During daylight hours, air temperature surpasses water temperature, whereas during nighttime hours, water temperature exceeds air temperature. Heat transfer from the air to the water contributes to an increase in water temperature, while the release of heat energy from the surface water into the air leads to a decrease in water temperature. Changes in the water temperature of Lake Laut Tawar are primarily influenced by changes in wind speed and air temperature by 80 percent simultaneously. However, while air temperature showed a partial response, wind speed did not exhibit a significant response. The relationship between these variables can be expressed through a mathematical model Tw = 0.356 Ta + 0.025 W + 15.674, where Tw is water temperature (°C), Ta is air temperature (°C), and W is wind speed (km/minute). Another factor that influences the water temperature of Lake Laut Tawar is the inlet water temperature, which was not observed in this research.

Downloads

Download data is not yet available.

References

Adhar, S., 2020. Model Dinamika Nitrogen dan Fosfor sebagai Upaya Pengendalain EutrofikasiDanau Laut Tawar Aceh Tengah. Medan: Sekolah Pasca Sarjana Universitas Sumatera Utara.

Adhar, S., Barus, T. A., Nababan, E. S. N. & Wahyuningsih, H., 2021. The waters transparency model of Lake Laut Tawar, Aceh, Indonesia. Virtual, Indonesia, IOP Publishing Ltd.

Adhar, S., Barus, T. A., Nababan, E. S. N. & Wahyuningsih, H., 2023. Trophic state index and spatio-temporal analysis of trophic parameters of Laut Tawar Lake, Aceh, Indonesia. AACL Bioflux, 16(1), pp. 342-355.

Adhar, S. et al., 2022. Pemodelan Status Trofik Danau Laut Tawar Aceh Tengah. Serambi Engineering, VII(2), pp. 2841 - 2851.

Adhar, S. et al., 2022. Influence of Rainfall and Spatial Temporal Distribution Analysis of Total Suspended Solid in Laut Tawar Lake. Online, IOP Conference Series Earth and Environmental Science .

Adhar, S. et al., 2021. Analisa Limbah Fosfor Kegiatan Keramba Jaring Apung di Danau Laut Tawar Aceh Tengah. Serambi Engineering, VI(3), pp. 2024-2032.

Austin, J. A. & Colman, S. M., 2007. Lake Superior summer water temperatures are increasing more rapidly than regional temperatures: A positive ice-albedo feedback. Geophysical Research Letters, 34(6).

Besson, M. et al., 2016. Influence of water temperature on the economic value of growth rate in fish farming: The case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture, Volume 462, pp. 47-55.

Boyd, C. E., 2015. Water Quality: An Introduction.. Berlin: Springer.

Coats, R. et al., 2006. The Warming of Lake Tahoe. Climatic Change, 76(1), pp. 121-148.

Collas, F. P. L. et al., 2019. Sub-Daily Temperature Heterogeneity in a Side Channel and the Influence on Habitat Suitability of Freshwater Fish. Remote Sensing, 11(20), p. 2367.

Dugdale, S. J., Curry, R. A., St-Hilaire, A. & Andrews, S. N., 2018. Impact of Future Climate Change on Water Temperatureand Thermal Habitat for Keystone Fishes in the Lower SaintJohn River, Canada. Water Resources Management, Volume 32, p. 4853–4878.

Ghozali, I., 2013. Aplikasi Analisis Multivariate dengan Program IBM SPSS 21 Update PLS Regresi. Semarang: Badan Penerbit Universitas Diponegoro.

Grebner, D. L., Bettinger, P. & Siry, J. P., 2013. Introduction to Forestry and Natural Resources. San Diego: Academic Press.

Haddout, S., Priya, K. L. & Boko, M., 2018. Thermal response of Moroccan lakes to climatic warming: first results. Annales de Limnologie - International Journal of Limnology, 54(2).

Haddout, S. et al., 2022. Modeling of depth profiles of the water temperature in Lake Sidi Ali (Morocco). Journal of River Basin Management.

Hampton, S. E. et al., 2008. Sixty years of environmental change in the world's largest freshwater lake – Lake Baikal, Siberia. Global Change Biology, 14(8), pp. 1947-1958.

Ho, L. T. & Goethals, P. L. M., 2019. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water, 11(7), p. 1462.

Huisman, J. et al., 2018. Cyanobacterial blooms. Nature Reviews Microbiology volume, Volume 16, p. 471 – 483.

IPCC, 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press.

Irwandi, H., Rosid, M. S. & Mart, T., 2021. The effects of ENSO, climate change and human activities on the water level of Lake Toba, Indonesia: a critical literature review. Geoscience Letters, 8(21).

Irwandi, H., Rosid, M. S. & Mart, T., 2023. Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction. Scientific Reports, Volume 13, p. 2542.

Janssen, A. B. G. et al., 2021. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology, 66(1), pp. 1-12.

Jasalesmana, T. et al., 2019. Pengaruh Wind Stress terhadap Stratifikasi Suhu Harian Kolom Air Danau Maninjau. LIMNOTEK Perairan Darat Tropis di Indonesia, 26(1), p. 55–64.

Jeppesen, E. & Iversen, T. M., 1987. Two simple models for estimating daily mean water temperatures and diel variations in a Danish low gradient stream. OIKOS, Volume 49, pp. 149-155.

Jia, T. et al., 2022. Review on the Change Trend, Attribution Analysis,Retrieval, Simulation, and Prediction of Lake Surface Water Temperature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume 15, pp. 6324-6355.

Joehnk, K. D. et al., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, Volume 14, pp. 495-512.

Lee, K. & An, J., 2013. Correlation and Hysteresis Analysis of Air‐Water Temperature in Four Rivers: Preliminary study for water temperature prediction. Journal of Environmental Policy, 12(2), pp. 17-32.

Legionosuko, T., Madjid, M. A., Asmoro, N. & Samudro, E. G., 2019. Posisi dan Strategi Indonesia dalam Menghadapi Perubahan Iklim guna Mendukung Ketahanan Nasiona. Jurnal Ketahanan Nasional, 25(3), pp. 295-312.

Lewis, W. M. J., McCutchan, J. H. J. & Roberson, J., 2019. Effects of Climatic Change on Temperature and Thermal Structure of a Mountain Reservoir. Water Resources Researh, Volume 55, pp. 1988-1999.

Lynch, A. J. et al., 2015. Climate Change Projections for Lake Whitefish (Coregonus clupeaformis) Recruitment in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior. Journal of Great Lakes Research, 41(2), pp. 415-422.

Magee, M. R. & Wu, C. H., 2017. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System, Volume 21, p. 6253–6274.

Magee, M. R. et al., 2016. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrology Earth System Sciences, 20(5), p. 1681–1702.

Mardiatmoko, G., 2020. Pentingnya Uji Asumsi Klasik pada Analisis Regresi Linier Berganda (Studi Kasus Penyusunan Persamaan Allometrik Kenari Muda (Canarium Indicum L.). BAREKENG, Jurnal Ilmu Matematika dan Terapan, 14(3), p. 333–342.

Misbahuddin & Hasan, I., 2013. Analisis Data Penelitian dengan Statistik. Edisi Ke-2 penyunt. Jakarta: Bumi Aksara.

O’Reilly, C. M. et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), pp. 10773-10781.

Paerl, H. W. & Paul, V. J., 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), pp. 1349-1363.

Rice, E., Dam, H. G. & Stewart, G., 2015. Impact of Climate Change on Estuarine Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in Copepod Size and Community Structure. Estuaries and Coasts, Volume 38, p. 13–23.

Sandy, D. A., 2017. Pengaruh Intensitas Cahaya Matahari Terhadap Perubahan Suhu, Kelembaban Udara dan Tekanan Udara. Jember: Program Studi Pendidikan Fisika Jurusan Pendidikan MIPA Fakultas Keguruan dan Ilmu Pendidikan Universitas Jember.

Santoso, S., 2013. Menguasai SPSS 21 di Era Informasi. Jakarta: PT.ELEK Media Komputindo.

Setiawati, 2021. Analisis Pengaruh Kebijakan Deviden Terhadap Nilai Perusahaan Pada Perusahaan Farmasi di BEI. Jurnal Inovasi Penelitian, 1(8), pp. 1581-1590.

Su, H. et al., 2013. A Physically Based Spatial Expansion Algorithm for Surface Air Temperature and Humidity. Advances in Meteorology, Volume 2013, p. 8 pages.

Sunyoto, D., 2016. Metodologi Penelitian Akuntansi. Bandung: PT Refika Aditama.

Szumińska, D., Czapiewski, S. & Goszczyński, J., 2020. Changes in Hydromorphological Conditions in an Endorheic Lake Influenced by Climate and Increasing Water Consumption, and Potential Effects on Water Quality. Water , 12(5), p. 1348.

Toffolon, M. et al., 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography, 59(6), p. 2185–2202.

Wondie, A., 2018. Ecological conditions and ecosystem services of wetlands in the Lake Tana Area, Ethiopia. Ecohydrology and Hydrobiology, 18(2), pp. 231-244.

Woolway, R. I. et al., 2021. Lake heatwaves under climate change. Nature, Volume 589, p. 402–407.

Woolway, R. I. et al., 2016. Diel Surface Temperature Range Scales with Lake Size. PLOS ONE, 11(3), p. e0152466.

Woolway, R. I. et al., 2020. Global lake responses to climate change. nature reviews earth & environment, Volume 1, p. 388–403.

Yang, K. et al., 2018. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake. Science of The Total Environment, Volume 624, pp. 859-871.

Yu, S. J., Ryu, I. G., Park, M. J. & Im, J. K., 2021. Long-term relationship between air and water temperatures in Lake Paldang, South Korea. Environmental Engineering Research, 26(4), p. 200177.

Yvon-Durocher, G. et al., 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, Volume 487, p. 472–476.

Downloads

Published

2024-09-30