Assessing the Carbon Sequestration Potential of Ultramafic Rocks in the Kolaka Ophiolite Complex, Southheastern Sulawesi: A Petrographic, Geochemical, and Mineralogical Study
DOI:
https://doi.org/10.25299/jgeet.2025.10.1.19484Keywords:
Carbon Sequestration, Degree Of Serpentinization, Mineral Carbonation, Peridotite, KolakaAbstract
Climate change has prompted significant global interest in carbon sequestration technologies, particularly using geological formations. This study investigates the potential of ultramafic rocks from the Kolaka Ophiolite Complex in Southeast Sulawesi for carbon sequestration, focusing on the mineralogical, petrographic, and geochemical characteristics that enhance their reactivity with CO₂. The research involved petrographic and mineragraphic analyses of 15 peridotite samples, geochemical measurements via X-ray fluorescence (XRF), and mineral characterization using scanning electron microscopy (SEM). The results revealed that Kolaka's ultramafic rocks, particularly harzburgite and lherzolite, exhibit moderate to high serpentinization, which enhances their reactivity with CO₂. Key minerals such as olivine, pyroxene, and serpentine, rich in magnesium, calcium, and iron oxides, demonstrate significant potential for mineral carbonation. Secondary minerals like magnesite and brucite were identified as products of carbonation, reinforcing the rocks' ability to act as carbon sinks. The discussion highlights that serpentinized peridotites are more effective for carbon sequestration than unaltered ones due to increased mineral reactivity. The presence of magnesite and Cr-Fe-rich carbonates, alongside serpentine veins, indicates that fluid-rock interactions have promoted ongoing carbonation processes. The Kolaka ultramafic rocks, therefore, hold strong potential for long-term carbon storage, offering a promising solution for reducing atmospheric CO₂ levels
Downloads
References
Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoisé, E. & Gibert, B. 2009. Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites. Environmental science & technology, 43. 1226-31.
Asadnabizadeh, M. 2019. Analysis of Internal Factors of the Swing States in the International Climate Change Negotiations: A Case Study of Poland in COP24. American Journal of Climate Change, 08(02). 263-283.
Bide, T., Styles, M. & Naden, J. 2014. An assessment of global resources of rocks as suitable raw materials for carbon capture and storage by mineralisation. Applied Earth Science IMM Transactions section B, 123. 179-195.
Chang, L., Zhang, R. & Wang, C. 2022. Evaluation and Prediction of Landslide Susceptibility in Yichang Section of Yangtze River Basin Based on Integrated Deep Learning Algorithm. Remote Sensing, 14(11). 2717.
Erlania, E., Nirmala, K. & Soelistyowati, D. T. 2013. Penyerapan karbon pada budidaya rumput laut Kappaphycus alvarezii dan Gracilaria gigas di Perairan Teluk Gerupuk, Lombok Tengah, Nusa Tenggara Barat. Jurnal Riset Akuakultur, 8(2). 287-297.
Hansen, L. D., Dipple, G. M., Gordon, T. M. & Kellett, D. A. 2005. CARBONATED SERPENTINITE (LISTWANITE) AT ATLIN, BRITISH COLUMBIA: A GEOLOGICAL ANALOGUE TO CARBON DIOXIDE SEQUESTRATION. The Canadian Mineralogist, 43(1). 225-239.
Harrison, A., Mavromatis, V., Oelkers, E. & Bénézeth, P. 2018. Solubility of the hydrated Mg-carbonates nesquehonite and dypingite from 5 to 35 °C: Implications for CO2 storage and the relative stability of Mg-carbonates. Chemical Geology, 504.
Höhne, N., Gidden, M. J., Den Elzen, M., Hans, F., Fyson, C., Geiges, A., Jeffery, M. L., Gonzales-Zuñiga, S., Mooldijk, S., Hare, W. & Rogelj, J. 2021. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 11(10). 820-822.
Irzon, R., Hanang, S. & Sam, P. 2024. Prospecting CCS Project in Indonesia: A Case Study in Meratus Mountains, South Borneo. Jurnal Geologi dan Sumberdaya Mineral, 25(1). 31-40.
Jaya, R. I. M. C., Juarsan, L. I., Haraty, S. R., Pramadana, R. & Hasria 2024a. Serpentine Paragenesis in Ultramafic Rocks of the Baula - Pomalaa Ophiolite Complex, Southeast Sulawesi, Indonesia. Journal of Geology and Mineral Resources, 25(2). 95-106.
Jaya, R. I. M. C., Juarsan, L. I., Masri, Rubaiyn, A., Syahrul, Neni, Ramadani, S. & Hasria 2024b. Petrochemistry of Ultramafic Rock in Baula-Pomalaa Ophiolite Complex, Southeast Sulawesi, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 9(1). 44-51.
Jompa, J. & Murdiyarso, D. 2022. Rehabilitasi Kawasan Pesisir untuk Adaptasi Perubahan Iklim: Peran kunci mangrove dalam Nationally Determined Contributions, Working Paper 12. Bogor, Indonesia, CIFOR-ICRAF.p.
Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C. D. & Ishikawa, A. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392(1-4). 55-83.
Kelemen, P., Benson, S., Pilorgé, H., Psarras, P. C. & Wilcox, J. 2019. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1.
Kelemen, P., McQueen, N., Wilcox, J., Renforth, P., Dipple, G. & Paukert Vankeuren, A. 2020. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chemical Geology, 550. 119628.
Luu, K., Schoenball, M., Oldenburg, C. & Rutqvist, J. 2022. Coupled Hydromechanical Modeling of Induced Seismicity From CO2 Injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth, 127.
Matter, J. M., Stute, M., Snæbjörnsdottir, S., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Wolff-Boenisch, D., Mesfin, K., Fernandez de la Reguera Taya, D., Hall, J., Dideriksen, K. & Broecker, W. S. 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291). 1312-4.
Maulana, A., Christy, A. G. & Ellis, D. J. 2015. Petrology, geochemistry and tectonic significance of serpentinized ultramafic rocks from the South Arm of Sulawesi, Indonesia. Geochemistry, 75(1). 73-87.
Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. 2017. Reconciling controversies about the ‘global warming hiatus’. Nature, 545(7652). 41-47.
Power, I., Wilson, S. & Dipple, G. 2013. Serpentinite Carbonation for CO2 Sequestration. Elements, 9. 115–121.
Punnam, P., Krishnamurthy, B. & Surasani, V. 2022. Influence of Caprock Morphology on Solubility Trapping during CO2 Geological Sequestration. Geofluids, 2022. 1-15.
Rigopoulos, I., Delimitis, A., Ioannou, I., Efstathiou, A. M. & Kyratsi, T. 2018. Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites. Minerals Engineering, 120. 66-74.
Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K. & Meinshausen, M. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609). 631-9.
Simandjuntak, T. O., Surono & Sukido. 1993. Peta Geologi Lembar Kolaka, Sulawesi. Bandung: Pusat Penelitian dan Pengembangan Geologi.
Snæbjörnsdóttir, S. Ó., Sigfusson, B., Marieni, C., Goldberg, D., Gislason, S. & Oelkers, E. 2020. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1. 1-13.
Steinthorsdottir, K., Dipple, G. M., Cutts, J. A., Turvey, C. C., Milidragovic, D. & Peacock, S. M. 2022. Formation and Preservation of Brucite and Awaruite in Serpentinized and Tectonized Mantle in Central British Columbia: Implications for Carbon Mineralization and Nickel Mining. Journal of Petrology, 63(11).
Streckeisen, A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1). 1-33.
Sufriadin, Widodo, S., Thamrin, M., Maulana, A., Ito, A. & Otake, T. 2020. The nature of ultramafic rocks from Sulawesi, Indonesia and their suitability for CO2 sequestration. IOP Conference Series: Earth and Environmental Science, 589(1). 012024.
Syahrul. 2017. Studi Petrogenesis Dan Mineralisasi Kompleks Batuan Ultramafik Daerah Sopura, Kabupaten Kolaka, Provinsi Sulawesi Tenggara. Institut Teknologi Bandung.
Tolliver, C., Keeley, A. R. & Managi, S. 2019. Green bonds for the Paris agreement and sustainable development goals. Environmental Research Letters, 14(6). 064009.
Triana, K. & Wahyudi, J. 2020. Sea level rise in Indonesia: The drivers and the combined impacts from land subsidence. ASEAN Journal on Science and Technology for Development, 37(3). 3.
Trivedi, A., Pyasi, S. K. & Galkate, R. V. 2019. Impact of Climate Change Using Trend Analysis of Rainfall, RRL AWBM Toolkit, Synthetic and Arbitrary Scenarios. Current Journal of Applied Science and Technology, 38(6). 1-18.
Tutolo, B. M., Luhmann, A. J., Kong, X. Z., Saar, M. O. & Seyfried, W. E., Jr. 2014. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions. Environ Sci Technol, 48(4). 2445-52.
Warwick, P. D. & Zhu, Z.-L. 2012. New insights into the nation's carbon storage potential. Eos, Transactions, American Geophysical Union, 93(26). 241-242.
Whitney, D. L. & Evans, B. W. 2009. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1). 185-187.

Downloads
Published
Versions
- 2025-03-31 (2)
- 2025-02-13 (1)
Issue
Section
License
Copyright (c) 2025 Journal of Geoscience, Engineering, Environment, and Technology

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2019. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JGEET are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.