Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface

Ena Marlina (1), Akhmad Faruq Alhikami (2), Metty Trisna Negara (3), Sekar Rahima Sahwahita (4), Mochammad Basjir (5)
(1) Universitas Islam Malang, Indonesia,
(2) Universitas Islam Malang,
(3) Universitas Samawa, Indonesia,
(4) Universitas Airlangga, Indonesia,
(5) Universitas Islam Malang, Indonesia

Abstract

Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.

Full text article

Generated from XML file

References

Amirtharajah, R., & Chandrakasan, A. P. (1998). Self-powered signal processing using vibration-based power generation. IEEE journal of solid-state circuits, 33(5), 687-695. DOI: https://doi.org/10.1109/4.668982

Beeby, S. P., Tudor, M. J., & White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175. DOI: https://doi.org/10.1088/0957-0233/17/12/R01

Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., & Tabor, R. F. (2015). Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 454, 226-237. doi: https://doi.org/10.1016/j.jcis.2015.05.012 DOI: https://doi.org/10.1016/j.jcis.2015.05.012

Chakraborty, P., Deb, P., Chakraborty, S., Chatterjee, B., & Abraham, J. (2015). Cytotoxicity and antimicrobial activity of Colocasia esculenta. J. Chem. Pharm. Res, 7(12), 627-635.

Chau, T., Bruckard, W., Koh, P., & Nguyen, A. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science, 150(2), 106-115. DOI: https://doi.org/10.1016/j.cis.2009.07.003

Govaerts, R., Nic Lughadha, E., Black, N., Turner, R., & Paton, A. (2021). The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 8(1), 215. DOI: https://doi.org/10.1038/s41597-021-00997-6

Hao, G., Dong, X., & Li, Z. (2021). A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies. Energy, 232, 121071. DOI: https://doi.org/10.1016/j.energy.2021.121071

Helseth, L., & Wen, H. (2017). Visualisation of charge dynamics when water droplets move off a hydrophobic surface. European Journal of Physics, 38(5), 055804. DOI: https://doi.org/10.1088/1361-6404/aa82f7

Kim, H.-U., Lee, W.-H., Dias, H. R., & Priya, S. (2009). Piezoelectric microgenerators-current status and challenges. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(8), 1555-1568. DOI: https://doi.org/10.1109/TUFFC.2009.1220

Kudin, K. N., & Car, R. (2008). Why are water− hydrophobic interfaces charged? Journal of the American Chemical Society, 130(12), 3915-3919. DOI: https://doi.org/10.1021/ja077205t

Lee, Y. R., Shin, J. H., Park, I. S., Rhee, K., & Chung, S. K. (2015). Energy harvesting based on acoustically oscillating liquid droplets. Sensors and Actuators A: Physical, 231, 8-14. DOI: https://doi.org/10.1016/j.sna.2015.03.009

Li, B., Wang, Y., Wang, J., Yong, X., & Zhang, J. (2021). Quasi-Grotthuss mechanism in a nonporous sulphate. Journal of Energy Chemistry, 57, 233-237. DOI: https://doi.org/10.1016/j.jechem.2020.09.012

Maiyelvaganan, K., Kamalakannan, S., Shanmugan, S., Prakash, M., Coudert, F.-X., & Hochlaf, M. (2022). Identification of a Grotthuss proton hopping mechanism at protonated polyhedral oligomeric silsesquioxane (POSS)–water interface. Journal of Colloid and Interface Science, 605, 701-709. DOI: https://doi.org/10.1016/j.jcis.2021.07.115

Marlina, E., Wijayanti, W., Yuliati, L., & Wardana, I. (2020). The role of pole and molecular geometry of fatty acids in vegetable oils droplet on ignition and boiling characteristics. Renewable Energy, 145, 596-603. DOI: https://doi.org/10.1016/j.renene.2019.06.064

Mergedus, A., Kristl, J., Ivancic, A., Sober, A., Sustar, V., Krizan, T., & Lebot, V. (2015). Variation of mineral composition in different parts of taro (Colocasia esculenta) corms. Food chemistry, 170, 37-46. DOI: https://doi.org/10.1016/j.foodchem.2014.08.025

Negara, K., Wardana, I., Widhiyanuriyawan, D., & Hamidi, N. (2019). The role of the slope on taro leaf surface to produce electrical energy. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI: https://doi.org/10.1088/1757-899X/494/1/012084

Negara, K., Widhiyanuriyawan, D., Hamidi, N., & Wardana, I. (2020). The Dynamic Interaction of Water Droplet with Nano-Stalagmite Functional Groups of Taro Leaf Surface. Journal of Southwest Jiaotong University, 55(2). DOI: https://doi.org/10.35741/issn.0258-2724.55.2.28

Neo, R. G., & Khoo, B. C. (2021). Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration. Applied Energy, 285, 116428. DOI: https://doi.org/10.1016/j.apenergy.2020.116428

Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of electroceramics, 19, 167-184. DOI: https://doi.org/10.1007/s10832-007-9043-4

Ridwan, M. G., Kamil, M. I., Sanmurjana, M., Dehgati, A. M., Permadi, P., Marhaendrajana, T., & Hakiki, F. (2020). Low salinity waterflooding: Surface roughening and pore size alteration implications. Journal of Petroleum Science and Engineering, 195, 107868. doi: https://doi.org/10.1016/j.petrol.2020.107868 DOI: https://doi.org/10.1016/j.petrol.2020.107868

Subagyo, R., Wardana, I., Widodo, A., & Siswanto, E. (2017). The mechanism of hydrogen bubble formation caused by the super hydrophobic characteristic of taro leaves. International Review of Mechanical Engineering, 11(2), 95-100. DOI: https://doi.org/10.15866/ireme.v11i2.10621

Tandon, V., Bhagavatula, S. K., Nelson, W. C., & Kirby, B. J. (2008). Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis, 29(5), 1092-1101. DOI: https://doi.org/10.1002/elps.200700734

Yatsuzuka, K., Mizuno, Y., & Asano, K. (1994). Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. Journal of electrostatics, 32(2), 157-171. DOI: https://doi.org/10.1016/0304-3886(94)90005-1

Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A., & Hassan, S. H. A. (2021). The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renewable and Sustainable Energy Reviews, 144, 110984. DOI: https://doi.org/10.1016/j.rser.2021.110984

Authors

Ena Marlina
Akhmad Faruq Alhikami
alhikami@unisma.ac.id (Primary Contact)
Metty Trisna Negara
Sekar Rahima Sahwahita
Mochammad Basjir
Marlina, E., Alhikami, A. F., Negara, M. T., Sahwahita, S. R., & Basjir, M. (2023). Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface. Journal of Earth Energy Engineering, 12(2), 47–54. https://doi.org/10.25299/jeee.2023.12916

Article Details

Received 2023-05-23
Accepted 2023-07-20
Published 2023-10-31