Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface
Abstract
Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.
Full text article
References
Amirtharajah, R., & Chandrakasan, A. P. (1998). Self-powered signal processing using vibration-based power generation. IEEE journal of solid-state circuits, 33(5), 687-695. DOI: https://doi.org/10.1109/4.668982
Beeby, S. P., Tudor, M. J., & White, N. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12), R175. DOI: https://doi.org/10.1088/0957-0233/17/12/R01
Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., & Tabor, R. F. (2015). Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 454, 226-237. doi: https://doi.org/10.1016/j.jcis.2015.05.012 DOI: https://doi.org/10.1016/j.jcis.2015.05.012
Chakraborty, P., Deb, P., Chakraborty, S., Chatterjee, B., & Abraham, J. (2015). Cytotoxicity and antimicrobial activity of Colocasia esculenta. J. Chem. Pharm. Res, 7(12), 627-635.
Chau, T., Bruckard, W., Koh, P., & Nguyen, A. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science, 150(2), 106-115. DOI: https://doi.org/10.1016/j.cis.2009.07.003
Govaerts, R., Nic Lughadha, E., Black, N., Turner, R., & Paton, A. (2021). The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 8(1), 215. DOI: https://doi.org/10.1038/s41597-021-00997-6
Hao, G., Dong, X., & Li, Z. (2021). A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies. Energy, 232, 121071. DOI: https://doi.org/10.1016/j.energy.2021.121071
Helseth, L., & Wen, H. (2017). Visualisation of charge dynamics when water droplets move off a hydrophobic surface. European Journal of Physics, 38(5), 055804. DOI: https://doi.org/10.1088/1361-6404/aa82f7
Kim, H.-U., Lee, W.-H., Dias, H. R., & Priya, S. (2009). Piezoelectric microgenerators-current status and challenges. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(8), 1555-1568. DOI: https://doi.org/10.1109/TUFFC.2009.1220
Kudin, K. N., & Car, R. (2008). Why are water− hydrophobic interfaces charged? Journal of the American Chemical Society, 130(12), 3915-3919. DOI: https://doi.org/10.1021/ja077205t
Lee, Y. R., Shin, J. H., Park, I. S., Rhee, K., & Chung, S. K. (2015). Energy harvesting based on acoustically oscillating liquid droplets. Sensors and Actuators A: Physical, 231, 8-14. DOI: https://doi.org/10.1016/j.sna.2015.03.009
Li, B., Wang, Y., Wang, J., Yong, X., & Zhang, J. (2021). Quasi-Grotthuss mechanism in a nonporous sulphate. Journal of Energy Chemistry, 57, 233-237. DOI: https://doi.org/10.1016/j.jechem.2020.09.012
Maiyelvaganan, K., Kamalakannan, S., Shanmugan, S., Prakash, M., Coudert, F.-X., & Hochlaf, M. (2022). Identification of a Grotthuss proton hopping mechanism at protonated polyhedral oligomeric silsesquioxane (POSS)–water interface. Journal of Colloid and Interface Science, 605, 701-709. DOI: https://doi.org/10.1016/j.jcis.2021.07.115
Marlina, E., Wijayanti, W., Yuliati, L., & Wardana, I. (2020). The role of pole and molecular geometry of fatty acids in vegetable oils droplet on ignition and boiling characteristics. Renewable Energy, 145, 596-603. DOI: https://doi.org/10.1016/j.renene.2019.06.064
Mergedus, A., Kristl, J., Ivancic, A., Sober, A., Sustar, V., Krizan, T., & Lebot, V. (2015). Variation of mineral composition in different parts of taro (Colocasia esculenta) corms. Food chemistry, 170, 37-46. DOI: https://doi.org/10.1016/j.foodchem.2014.08.025
Negara, K., Wardana, I., Widhiyanuriyawan, D., & Hamidi, N. (2019). The role of the slope on taro leaf surface to produce electrical energy. Paper presented at the IOP Conference Series: Materials Science and Engineering. DOI: https://doi.org/10.1088/1757-899X/494/1/012084
Negara, K., Widhiyanuriyawan, D., Hamidi, N., & Wardana, I. (2020). The Dynamic Interaction of Water Droplet with Nano-Stalagmite Functional Groups of Taro Leaf Surface. Journal of Southwest Jiaotong University, 55(2). DOI: https://doi.org/10.35741/issn.0258-2724.55.2.28
Neo, R. G., & Khoo, B. C. (2021). Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration. Applied Energy, 285, 116428. DOI: https://doi.org/10.1016/j.apenergy.2020.116428
Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of electroceramics, 19, 167-184. DOI: https://doi.org/10.1007/s10832-007-9043-4
Ridwan, M. G., Kamil, M. I., Sanmurjana, M., Dehgati, A. M., Permadi, P., Marhaendrajana, T., & Hakiki, F. (2020). Low salinity waterflooding: Surface roughening and pore size alteration implications. Journal of Petroleum Science and Engineering, 195, 107868. doi: https://doi.org/10.1016/j.petrol.2020.107868 DOI: https://doi.org/10.1016/j.petrol.2020.107868
Subagyo, R., Wardana, I., Widodo, A., & Siswanto, E. (2017). The mechanism of hydrogen bubble formation caused by the super hydrophobic characteristic of taro leaves. International Review of Mechanical Engineering, 11(2), 95-100. DOI: https://doi.org/10.15866/ireme.v11i2.10621
Tandon, V., Bhagavatula, S. K., Nelson, W. C., & Kirby, B. J. (2008). Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis, 29(5), 1092-1101. DOI: https://doi.org/10.1002/elps.200700734
Yatsuzuka, K., Mizuno, Y., & Asano, K. (1994). Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. Journal of electrostatics, 32(2), 157-171. DOI: https://doi.org/10.1016/0304-3886(94)90005-1
Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A., & Hassan, S. H. A. (2021). The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renewable and Sustainable Energy Reviews, 144, 110984. DOI: https://doi.org/10.1016/j.rser.2021.110984
Authors
Copyright (c) 2023 Ena Marlina, Akhmad Faruq Alhikami, Metty Trisna Negara, Sekar Rahima Sahwahita, Mochammad Basjir
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. The copyright in the text of individual articles (including research articles, opinion articles, and abstracts) is the property of their respective authors, subject to a Creative Commons CC-BY-SA licence granted to all others. JEEE allows the author(s) to hold the copyright without restrictions and allows the author to retain publishing rights without restrictions.