ISSN (Print) : 1410-7783 ISSN (Online) : 2580-7110



Volume 22 Nomor 01, April 2022 : 29-38

### Infiltration Well Efficacy in Ciliwung Basin Based on Rainfall-Runoff Volumetric Analysis

Natio Jiwa Ksatria<sup>1\*</sup>, Taofik Hidayatullah<sup>1</sup>, Fuad Hasan<sup>2</sup>, Novreta Ersyi Darfia<sup>3</sup>, Syarvina<sup>4</sup>, M.

Rizky Kumaryadi<sup>5</sup>

<sup>1</sup> PT Kurniadi Rekajasa, DKI Jakarta, Indonesia
 <sup>2</sup> Universitas Widyatama, Kota Bandung, Indonesia
 <sup>3</sup> Universitas Riau, Pekanbaru, Indonesia
 <sup>4</sup> Universitas Sumatera Utara, Medan, Indonesia
 <sup>5</sup> PT Sapta Adhi Pratama, Kota Bandung, Indonesia

\* Corresponding author: natiojiwaksatria@hotmail.com Tel.: +62-81-122-50125; Received: Jan 12, 2022; Revision: Jul 5, 2022; Accepted: Jul 16, 2022 DOI: 10.25299/saintis.2022.vol22(01).8693

#### Abstract

Run-off management is the main challenge of every big city. Land availability, project timeframe, and financing are several issues regarding run-off management implementation, including Indonesia's Capital City, Jakarta. One of the engineering tools that used to reduce the negative impacts of run-off in Jakarta is Infiltration Well. Several researches on this topic confirm the positive impact of building infiltration well on small catchment area. This study aims to understand the efficacy of infiltration well project on big basin area, the Ciliwung Basin. Ciliwung basin is divided into two sub-basin, Upstream Ciliwung and Downstream Ciliwung. The analysis is performed using volumetric abstraction of infiltration well volume and daily infiltration rate. 4 rainfall stations are used in this study, 2-gauge rainfall stations on each basin. Infiltration well capacity is tested with different return-period rainfall based on daily and storm-rainfall (3-days cumulative rainfall). The results show that by implementing 1 million infiltration wells at each sub-basin the abstraction volume is below 10% for 10-year return period rainfall and below 5% for 25-year return period rainfall.

Keywords: Rainfall-Runoff, Ciliwung Basin, Infiltration Well, Abstraction

#### **INTRODUCTION**

Run-off management is the main challenge of every big city, including Jakarta, Indonesia's Capital City. Land availability, project timeframe and financing are several issues regarding run-off management implementation project. One of the engineering tools that used to reduce the negative impacts of run-off in Jakarta is Infiltration Well. The term Infiltration Well in Indonesia can be traced back to Sunjoto on 1994 [1]. The basis of infiltration well formula he proposed was derived from previous study on 1988. The infiltation well formula is then used until now in the form of Indonesia National Code (Standar Nasional Indonesia) [2].

The concept of infiltration well was proposed to be implemented in small catchment with relatively small design rainfall. Even in small catchment such as residential house the abstraction is quite low or the required number and dimension of infiltration well is big if analysis is done using Infiltration Well National Code [3] [4]. Research done in Bogor Regency [5] ,using direct volumetric of infiltration well, conclude that infiltration well is effective to reduce 70% rainfall with magnitude of 97.36 mm/day, the number of infiltration wells needed are 115 with additional infiltration trenches of 76. The real challenge is arise when infiltration well is implemented in big basin level. The big size of basin area, variety of land covers, and placement technical aspect should be assessed throuhgly. Another study of infiltration well eficacy in Upstream Ciliwiung Basin [6] show that by placing 13500-67500 infiltration wells peak discharge is reduce by 3-14%, the analysis was done by using HEC-HMS and sink formula different from National Code.

On bigger basin, the volume of run-off is rising along with the rise of basin area, assumed that the rainfall is spatially uniform. The temporal frame of rainfall also becoming significant role on basin level, rainfall that occurs more than a day will lessen the infiltration capacity. Puddle, and could lead to flood, will easily take place when rain is happening more than a day. To test rainfall-runoff analysis for such rainfall, the term storm-rainfall is used. Storm-rainfall is defined as 3-days cumulative rainfall.

Thus, this study is expected to understand the efficacy of huge numbers of infiltration well implementation in Upstream and Downstream Ciliwung Basin. The basin is selected as the term and implementation of infiltration well are mostly coming from area within the basin, such as Jakarta, Depok, and Bogor region.

### METHOD

The methods used in this study, in order, are as follows:

- Regional Rainfall Analysis
- Outlier Test
- Gumbel Distribution & Design Rainfall
- Kolmogorov-Smirnov
- Horton Infiltration
- Infiltration Well Volume Capacity
- Runoff Volume

Detailed description of each point is shown below:

1. Ciliwung Basin

Ciliwung Basin is the the catchment area of Ciliwung River, measuring 374 km2 in area. Upstream is located around Mount Gede and Mount Pangrango, while downstream is located at North Jakarta Shore.

2. Rainfall Data

Upstream and downstream definition for Ciliwung basin is based Katulampa gate. Area located southern from Katulampa is defined as upstream and northern from it is defined as downstream.



Figure 1. Ciliwung Basin

Rainfall data used for the study are taken from: •Upstream: Citeko and Bogor Rainfall Station year

•Opstream: Citeko and Bogor Rainfall Station year 2000-2020

•Downstream: Halim and Tanjung Priok Rainfall Station year 2000-2020.

3. Regional Rainfall Analysis

Arithmetic average is used as main regional rainfall analysis. Regional rainfall analysis is performed to determine the uniform rainfall height over the basin [7].

$$R_{reg} = \frac{R_a + R_b + \dots + R_n}{N} \tag{1}$$

Where:

Rreg = Regional rainfall (mm)

Ra, Rb, ..., Rn = Rainfall at each gauge-station (mm)

4. Outlier Test

Outlier is the data that statistically very different data compared to the other normal empirical data. Outlier will make statistic prediction be overestimated and/or underestimated and will lead to wrong conclusion. The test used in this study is based on Tuckey's Fences, a nonparametric test that is simple to use. Outlier range based on this test is as follows:

$$[Q_1 - k(Q_3 - Q_1), Q_3 + k(Q_3 - Q_1)]$$
<sup>(2)</sup>

Where:

Q1 = Lower quartile

Q3 = Upper quartile

k = Outlier coefficient (1,5)

5. Gumbel Distribution and Design Rainfall

Gumbel distribution is used to generate rainfall data distribution based on Gumbel formula. The output of gumbel distribution is used as design rainfall. The formula is as follows [7]:

$$R_{Tr} = R_{ave} + S.K_{Tr} \tag{3}$$

Where:

RTr = Design rainfall (mm)

Rave = Average rainfall (mm)

S = Rainfall data standard deviation

KTr = Return period coefficient

6. K-S Test

Kolmogorov-Smirnov (KS) Test is a nonparametric fitness test to comparing two samples [8]. This test is quantifying the distance between sample empirical distribution function and the cumulative distribution function that is used. The hypothesis and maximum distance allowed formula of K-S test are as follows:

$$H_0: F = G \tag{4}$$

Minimum distance allowed

$$D_{min} = max_x[F_n(x) - G_n(x)]$$
(5)

Where:

F

= Empirical distribution function

G = Cumulative distribution function

Dmin = Minimum distance allowed

### 7. Horton Infiltration

Infiltration rate calculation is based on Horton infiltration formula [9]. The formula is as follows:

$$f = f_c + ((f_o - f_c)e^{-ct}$$
(6)

Where:

f = Infiltration rate at t (time) (cm) fc = Constant infiltration rate (cm/hour)

fo = Initial infiltration rate (cm/hour)

c = Soil decay constant

t = Time (hour)

### 8. Infiltration Well Volume

Infiltration well volume capacity is the total cumulative of infiltration well with cylinder shape (Diameter D, and Height H) and total infiltration in one day calculated only at bottom side.

### 9. Rainfall Volume

Rainfall volume is the product of daily rainfall rate times basin area without other abstraction (runoff coefficient). Storm rainfall volume is the total rainfall at D-1, D, and D+1, the aim for calculating storm rainfall is to understand infiltration efficacy during an event of rainfall more than one day, this event will lessen soil infiltration capacity. The infiltration rate for storm rainfall is assumed daily since the soil is highly saturated from previous rain day.

#### 10. Efficacy Calculation

To calculate infiltration well efficacy direct volumetric abstraction is calculated as follows:

$$Eff. = \frac{Infiltration Well Volume}{Rainfall Volume}$$
(7)

Direct abstraction is more favorable calculation to understand infiltration well capacity in recent research and studies [10] [11] [12] [13] [14] [15]. The formula provides more rational

infiltration well volume as the volume is calculated as follows:

$$Vol. Infiltration = \frac{\pi . D^2 . H}{4} + \frac{\pi . D^2 . f}{4}$$
(8)

Where:

D = Infiltration well diameter (m)

H = Infiltration well depth (m)

f = Initial infiltration rate (m/day)

### **RESULTS AND DISCUSSION**

1. Regional Rainfall Analysis

Regional rainfall analysis result for maximum daily and storm rainfall is shown in Table 1 to Table 4. By looking into the maximum daily rainfall, downstream Ciliwung basin had bigger rainfall events compared to upstream basin. But for storm rainfall event, both sub basin experienced relatively the same magnitude of rainfall.

2. Outlier Test

Outlier test is performed for all datasets, upstream and downstream, maximum daily and storm rainfall. The resume of outlier test is stated below:

- Downstream Ciliwung maximum daily rainfall, upper boundary is 182 mm/day and lower boundary is 64 mm/day, no outlier.
- Downstream Ciliwung storm rainfall, upper boundary is 230 mm/day and lower boundary is 117 mm/day, no outlier.
- Upstream Ciliwung maximum daily rainfall, upper boundary is 138 mm/day and lower boundary is 65 mm/hari, one outlier is removed.
- Upstream Ciliwung storm rainfall, upper boundary is 233 mm/day and lower boundary is 74 mm/day, no outlier.

| Year/<br>Month | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Maximum<br>Daily<br>Rainfall |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|
| 2000           | 65  | 59  | 29  | 36  | 31  | 14  | 26  | 16  | 28  | 43  | 7   | 41  | 65                           |
| 2001           | 59  | 45  | 64  | 36  | 52  | 23  | 44  | 27  | 38  | 36  | 44  | 26  | 64                           |
| 2002           | 147 | 123 | 89  | 22  | 6   | 23  | 1   | 0   | 0   | 38  | 33  | 81  | 147                          |
| 2003           | 46  | 99  | 37  | 17  | 0   | 1   | 2   | 37  | 67  | 36  | 126 | 29  | 126                          |
| 2004           | 57  | 102 | 76  | 16  | 19  | 25  | 10  | 5   | 13  | 74  | 50  | 121 | 121                          |
| 2005           | 89  | 110 | 80  | 29  | 37  | 46  | 7   | 23  | 91  | 20  | 27  | 37  | 110                          |
| 2006           | 35  | 90  | 55  | 32  | 27  | 34  | 44  | 0   | 0   | 35  | 33  | 67  | 90                           |
| 2007           | 46  | 182 | 32  | 54  | 29  | 18  | 37  | 53  | 17  | 15  | 42  | 121 | 182                          |
| 2008           | 44  | 112 | 56  | 62  | 47  | 20  | 0   | 20  | 18  | 12  | 51  | 57  | 112                          |
| 2009           | 149 | 87  | 35  | 71  | 69  | 22  | 16  | 95  | 15  | 20  | 61  | 41  | 149                          |
| 2010           | 86  | 88  | 40  | 22  | 85  | 28  | 24  | 34  | 67  | 67  | 50  | 36  | 88                           |

Table 1. Downstream Ciliwung Maximum Daily Rainfall

| 2011 | 20  | 158 | 31  | 13  | 64 | 33 | 51 | 10 | 6  | 34 | 70 | 66  | 158 |
|------|-----|-----|-----|-----|----|----|----|----|----|----|----|-----|-----|
| 2012 | 53  | 91  | 60  | 39  | 36 | 36 | 13 | 0  | 25 | 39 | 41 | 58  | 91  |
| 2013 | 118 | 49  | 88  | 50  | 57 | 31 | 41 | 72 | 5  | 42 | 66 | 82  | 118 |
| 2014 | 135 | 77  | 95  | 37  | 87 | 28 | 36 | 72 | 54 | 6  | 58 | 58  | 135 |
| 2015 | 70  | 132 | 125 | 47  | 27 | 28 | 3  | 2  | 16 | 1  | 92 | 87  | 132 |
| 2016 | 61  | 58  | 39  | 112 | 44 | 60 | 43 | 45 | 73 | 54 | 80 | 38  | 112 |
| 2017 | 59  | 149 | 42  | 92  | 44 | 55 | 20 | 19 | 43 | 55 | 31 | 62  | 149 |
| 2018 | 49  | 101 | 65  | 69  | 41 | 16 | 1  | 46 | 15 | 63 | 50 | 34  | 101 |
| 2019 | 128 | 72  | 130 | 17  | 14 | 1  | 0  | 0  | 0  | 1  | 29 | 103 | 130 |
| 2020 | 146 | 156 | 47  | 58  | 22 | 32 | 56 | 74 | 6  | 58 | 59 | 44  | 156 |

 Table 2. Upstream Ciliwung Maximum Daily Rainfall

| Year/<br>Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Maximum<br>Daily<br>Rainfall |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|
| 2000           | 55  | 58  | 18  | 58  | 60  | 60  | 63  | 49  | 56  | 43  | 65  | 20  | 65                           |
| 2001           | 71  | 88  | 63  | 41  | 55  | 41  | 78  | 50  | 84  | 52  | 58  | 46  | 88                           |
| 2002           | 137 | 93  | 62  | 59  | 35  | 86  | 50  | 38  | 38  | 54  | 67  | 57  | 137                          |
| 2003           | 29  | 87  | 54  | 80  | 74  | 75  | 25  | 42  | 63  | 63  | 47  | 56  | 87                           |
| 2004           | 51  | 54  | 43  | 67  | 61  | 52  | 66  | 24  | 53  | 83  | 41  | 66  | 83                           |
| 2005           | 138 | 87  | 108 | 55  | 56  | 53  | 35  | 46  | 50  | 63  | 80  | 22  | 138                          |
| 2006           | 92  | 41  | 21  | 20  | 52  | 44  | 5   | 61  | 23  | 39  | 49  | 51  | 92                           |
| 2007           | 102 | 83  | 41  | 91  | 28  | 30  | 36  | 54  | 60  | 49  | 79  | 62  | 102                          |
| 2008           | 80  | 73  | 81  | 58  | 44  | 46  | 102 | 39  | 96  | 54  | 70  | 35  | 102                          |
| 2009           | 93  | 60  | 50  | 48  | 83  | 78  | 54  | 16  | 29  | 53  | 46  | 40  | 93                           |
| 2010           | 52  | 63  | 53  | 15  | 51  | 70  | 50  | 56  | 92  | 55  | 53  | 30  | 92                           |
| 2011           | 58  | 37  | 22  | 37  | 64  | 41  | 88  | 57  | 17  | 53  | 80  | 41  | 88                           |
| 2012           | 35  | 59  | 29  | 116 | 27  | 35  | 40  | 58  | 58  | 53  | 55  | 46  | 116                          |
| 2013           | 87  | 83  | 101 | 60  | 77  | 37  | 56  | 34  | 19  | 45  | 46  | 77  | 101                          |
| 2014           | 122 | 68  | 36  | 100 | 99  | 49  | 71  | 76  | 19  | 58  | 90  | 92  | 122                          |
| 2015           | 28  | 64  | 63  | 45  | 35  | 32  | 1   | 95  | 28  | 32  | 103 | 55  | 103                          |
| 2016           | 74  | 59  | 46  | 63  | 41  | 66  | 60  | 33  | 56  | 53  | 64  | 28  | 74                           |
| 2017           | 29  | 54  | 55  | 51  | 48  | 76  | 40  | 47  | 63  | 60  | 46  | 32  | 76                           |
| 2018           | 35  | 91  | 79  | 41  | 72  | 71  | 18  | 42  | 59  | 61  | 54  | 38  | 91                           |
| 2019           | 45  | 71  | 39  | 101 | 79  | 34  | 22  | 30  | 79  | 87  | 54  | 90  | 101                          |
| 2020           | 55  | 118 | 77  | 69  | 63  | 34  | 37  | 32  | 84  | 65  | 23  | 48  | 118                          |

### **Table 3.** Downstream Ciliwung Storm Rainfall

| Year/<br>Month | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Maximum<br>Daily<br>Rainfall |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|
| 2000           | 131 | 123 | 40  | 58  | 49  | 54  | 14  | 26  | 16  | 14  | 35  | 11  | 131                          |
| 2001           | 103 | 98  | 74  | 29  | 36  | 61  | 23  | 117 | 32  | 68  | 103 | 103 | 117                          |
| 2002           | 256 | 215 | 79  | 86  | 23  | 8   | 23  | 1   | 0   | 0   | 46  | 39  | 256                          |
| 2003           | 40  | 140 | 38  | 40  | 6   | 0   | 1   | 2   | 47  | 80  | 61  | 88  | 140                          |
| 2004           | 89  | 198 | 82  | 133 | 24  | 21  | 25  | 10  | 5   | 26  | 89  | 76  | 198                          |
| 2005           | 209 | 196 | 117 | 43  | 55  | 73  | 8   | 39  | 91  | 23  | 24  | 16  | 209                          |

### Infiltration Well Efficacy in Citarum Basin Based on Rainfall-Runoff Volumetric Analysis (Natio Jiwa Ksatria, dkk)

| 2006 | 59  | 163 | 87  | 34  | 27 | 34 | 44 | 0   | 0  | 38 | 67  | 92  | 163 |  |
|------|-----|-----|-----|-----|----|----|----|-----|----|----|-----|-----|-----|--|
| 2007 | 234 | 289 | 59  | 86  | 36 | 53 | 49 | 61  | 17 | 15 | 59  | 193 | 289 |  |
| 2008 | 173 | 163 | 60  | 62  | 58 | 56 | 0  | 24  | 29 | 17 | 69  | 37  | 173 |  |
| 2009 | 207 | 146 | 52  | 83  | 76 | 35 | 16 | 96  | 15 | 20 | 103 | 8   | 207 |  |
| 2010 | 137 | 148 | 46  | 33  | 97 | 53 | 28 | 54  | 84 | 77 | 57  | 46  | 148 |  |
| 2011 | 46  | 195 | 31  | 21  | 58 | 26 | 51 | 14  | 3  | 35 | 79  | 82  | 195 |  |
| 2012 | 126 | 124 | 67  | 38  | 51 | 65 | 13 | 0   | 25 | 47 | 77  | 73  | 126 |  |
| 2013 | 201 | 51  | 118 | 50  | 75 | 39 | 56 | 104 | 10 | 60 | 111 | 100 | 201 |  |
| 2014 | 290 | 156 | 68  | 42  | 34 | 45 | 45 | 110 | 59 | 6  | 102 | 89  | 290 |  |
| 2015 | 89  | 265 | 149 | 78  | 50 | 29 | 3  | 3   | 16 | 1  | 114 | 154 | 265 |  |
| 2016 | 77  | 126 | 85  | 118 | 62 | 89 | 81 | 79  | 77 | 80 | 88  | 26  | 126 |  |
| 2017 | 68  | 182 | 81  | 107 | 44 | 82 | 54 | 20  | 64 | 55 | 70  | 90  | 182 |  |
| 2018 | 88  | 82  | 74  | 168 | 45 | 25 | 3  | 66  | 15 | 66 | 87  | 26  | 168 |  |
| 2019 | 149 | 82  | 231 | 35  | 21 | 1  | 0  | 0   | 0  | 1  | 29  | 154 | 231 |  |
| 2020 | 160 | 175 | 56  | 62  | 39 | 32 | 56 | 74  | 6  | 58 | 72  | 109 | 175 |  |

### Table 4. Upstream Ciliwung Storm Rainfall

| Year/<br>Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Maximum<br>Daily<br>Rainfall |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|
| 2000           | 82  | 116 | 38  | 41  | 68  | 65  | 34  | 60  | 93  | 44  | 66  | 19  | 116                          |
| 2001           | 60  | 78  | 35  | 66  | 68  | 85  | 125 | 20  | 62  | 44  | 57  | 14  | 125                          |
| 2002           | 230 | 100 | 115 | 113 | 35  | 65  | 90  | 62  | 59  | 90  | 92  | 62  | 230                          |
| 2003           | 32  | 95  | 55  | 52  | 139 | 82  | 0   | 93  | 59  | 104 | 60  | 59  | 139                          |
| 2004           | 74  | 92  | 73  | 107 | 35  | 38  | 44  | 146 | 53  | 27  | 52  | 129 | 146                          |
| 2005           | 154 | 101 | 120 | 36  | 107 | 135 | 109 | 54  | 101 | 89  | 119 | 38  | 154                          |
| 2006           | 180 | 80  | 22  | 45  | 52  | 51  | 71  | 68  | 23  | 89  | 58  | 63  | 180                          |
| 2007           | 148 | 233 | 94  | 122 | 56  | 45  | 112 | 94  | 70  | 74  | 129 | 102 | 233                          |
| 2008           | 137 | 108 | 158 | 117 | 83  | 60  | 102 | 70  | 179 | 146 | 140 | 44  | 179                          |
| 2009           | 128 | 82  | 32  | 60  | 53  | 47  | 95  | 20  | 21  | 58  | 46  | 44  | 128                          |
| 2010           | 74  | 70  | 56  | 15  | 62  | 21  | 13  | 85  | 180 | 64  | 43  | 21  | 180                          |
| 2011           | 25  | 34  | 23  | 60  | 60  | 54  | 104 | 31  | 34  | 65  | 54  | 29  | 104                          |
| 2012           | 85  | 106 | 54  | 160 | 24  | 21  | 27  | 68  | 88  | 69  | 87  | 81  | 160                          |
| 2013           | 193 | 34  | 30  | 51  | 57  | 31  | 77  | 68  | 19  | 67  | 51  | 112 | 193                          |
| 2014           | 209 | 146 | 41  | 104 | 172 | 64  | 113 | 113 | 23  | 158 | 102 | 43  | 209                          |
| 2015           | 43  | 94  | 126 | 57  | 41  | 44  | 95  | 95  | 32  | 18  | 95  | 119 | 126                          |
| 2016           | 52  | 108 | 94  | 97  | 51  | 95  | 51  | 29  | 74  | 67  | 90  | 15  | 108                          |
| 2017           | 31  | 106 | 41  | 48  | 46  | 47  | 40  | 31  | 78  | 58  | 46  | 40  | 106                          |
| 2018           | 69  | 212 | 47  | 49  | 71  | 25  | 17  | 52  | 37  | 37  | 58  | 30  | 212                          |
| 2019           | 53  | 38  | 14  | 122 | 38  | 34  | 24  | 56  | 92  | 98  | 58  | 109 | 122                          |
| 2020           | 190 | 171 | 153 | 134 | 136 | 73  | 52  | 39  | 88  | 115 | 44  | 83  | 190                          |

#### 3. Design Rainfall

Gumbel distribution is acceptable with K-S test distance value of 0.14 with maximum allowed value of 0.3.

# **Table 5.** Downstream CiliwungDaily Design Rainfall

| Return<br>Period | $R_{Tr}(mm)$ |
|------------------|--------------|
| 2                | 116          |
| 5                | 149          |
| 10               | 171          |
| 25               | 198          |
| 50               | 219          |
| 100              | 239          |

# **Table 6.** Upstream CiliwungDaily Design Rainfall

| Return<br>Period | $R_{Tr}(mm)$ |
|------------------|--------------|
| 2                | 96           |
| 5                | 116          |
| 10               | 130          |
| 25               | 147          |
| 50               | 159          |
| 100              | 172          |

# **Table 7.** Downstream CiliwungStorm Design Rainfall

| Return<br>Period | $R_{Tr}(mm)$ |
|------------------|--------------|
| 2                | 182          |
| 5                | 238          |
| 10               | 275          |
| 25               | 322          |
| 50               | 357          |
| 100              | 392          |

## **Table 8.** Upstream CiliwungStorm Design Rainfall

| Return<br>Period | $R_{Tr}(mm)$ |
|------------------|--------------|
| 2                | 153          |
| 5                | 197          |
| 10               | 227          |
| 25               | 264          |
| 50               | 291          |
| 100              | 319          |

Daily design rainfall of Downstream Ciliwung is greater than Upstream Ciliwung, at value around 30 mm for each return period. At storm event design rainfall, Upstream Ciliwung magnitude increase significantly above 75% while Downstream Ciliwung increase rate on average at 61%. Despite smaller daily design rainfall, Upstream Ciliwung experiencing almost the same rainfall rate on the day before and day after as Downstream Ciliwung.

### 4. Infiltration Rate

The actual infiltration rate might vary between area and soil type across Ciliwung basin. Hence uniform infiltration rate value for Ciliwung Basin is based on previous research by Dwinanti Rika [9]. The research was able to get infiltration rate around Depok, this value is used as infiltration rate for all Ciliwung Basin.. The value taken from the research are fo = 18.122 cm/hour, fc = 2.306 cm/hour, and c = 1. Total infiltration for all Ciliwung basin is 57.095 cm/day, shown in Table 9.

#### 5. Infiltration Well Volume

Infiltration well is commonly built using reinforced-concrete or masonry for wall face against soil pressure. Another reason is for simple constructability using those materials.

That is the reason the infiltration rate is only calculated at the bottom side of infiltration well. Indonesia National Code [2] also stated the maximum soil water table allowed for infiltration well construction is -2.00 m below top soil. This value is then taken as design height of all infiltration well. The diameter is assumed to be 1 m. Thus, the effective of one infiltration well volume capacity is 2.02 m3 (infiltration well volume plus infiltration rate volume). Total number of infiltrations well is assumed 1 million in each basin.

#### Table 9. Ciliwung Basin Infiltration Rate

| Time<br>(Hour-) | Infiltration<br>Rate<br>(cm/hour) | Infiltration<br>(cm) |
|-----------------|-----------------------------------|----------------------|
| 1               | 3.882                             | 3.882                |
| 2               | 2.463                             | 6.345                |
| 3               | 2.322                             | 8.667                |
| 4               | 2.308                             | 10.975               |
| 5               | 2.306                             | 13.281               |
| 6               | 2.306                             | 15.587               |
| 7               | 2.306                             | 17.893               |

#### Infiltration Well Efficacy in Citarum Basin Based on Rainfall-Runoff Volumetric Analysis (Natio Jiwa Ksatria, dkk)

| 8  | 2.306 | 20.199 |
|----|-------|--------|
| 9  | 2.306 | 22.505 |
| 10 | 2.306 | 24.811 |
| 11 | 2.306 | 27.117 |
| 12 | 2.306 | 29.423 |
| 13 | 2.306 | 31.729 |
| 14 | 2.306 | 34.035 |
| 15 | 2.306 | 36.341 |
| 16 | 2.306 | 38.647 |
| 17 | 2.306 | 40.953 |
| 18 | 2.306 | 43.259 |
| 19 | 2.306 | 45.565 |
| 20 | 2.306 | 47.871 |
| 21 | 2.306 | 50.177 |
| 22 | 2.306 | 52.483 |
| 23 | 2.306 | 54.789 |
| 24 | 2.306 | 57.095 |

### 6. Infiltration Well Efficacy

Infiltration well efficacy for each events, Upstream-Downstream, Daily-Storm Rainfall, are shown below.

# **Table 10.** Downstream CiliwungDaily Rainfall Efficacy

| Return<br>Period<br>Year | Rainfall<br>Plan<br>mm/day | Runoff<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Perscentage<br>% |
|--------------------------|----------------------------|-------------------------------------------|------------------------------------------------|---------------------------------|
| 2                        | 116                        | 24.71                                     | 2.02                                           | 8.2%                            |
| 5                        | 149                        | 31.69                                     | 2.02                                           | 6.4%                            |
| 10                       | 171                        | 36.31                                     | 2.02                                           | 5.6%                            |
| 25                       | 198                        | 42.14                                     | 2.02                                           | 4.8%                            |
| 50                       | 219                        | 46.48                                     | 2.02                                           | 4.3%                            |
| 100                      | 239                        | 50.77                                     | 2.02                                           | 4.0%                            |

# **Table 11.** Upstream CiliwungDaily Rainfall Efficacy

| Return<br>Period<br>Year | Rainfall<br>Plan<br>mm/day | Runoff<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Perscentage<br>% |
|--------------------------|----------------------------|-------------------------------------------|------------------------------------------------|---------------------------------|
| 2                        | 96                         | 14.48                                     | 2.02                                           | 13.9%                           |
| 5                        | 116                        | 17.56                                     | 2.02                                           | 11.5%                           |
| 10                       | 130                        | 19.60                                     | 2.02                                           | 10.3%                           |
| 25                       | 147                        | 22.18                                     | 2.02                                           | 9.1%                            |
| 50                       | 159                        | 24.09                                     | 2.02                                           | 8.4%                            |
| 100                      | 172                        | 25.99                                     | 2.02                                           | 7.8%                            |

# **Table 12.** Downstream CiliwungStorm Rainfall Efficacy

| Return<br>Period<br>Year | Rainfall<br>Plan<br>mm/day | Runoff<br>Volume<br>(mil.m³) | Abstraction<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Perscentage<br>% |
|--------------------------|----------------------------|------------------------------|------------------------------------------------|---------------------------------|
| 2                        | 182                        | 38.74                        | 2.02                                           | 5.2%                            |
| 5                        | 238                        | 50.67                        | 2.02                                           | 4.0%                            |
| 10                       | 275                        | 58.56                        | 2.02                                           | 3.4%                            |
| 25                       | 322                        | 68.54                        | 2.02                                           | 2.9%                            |
| 50                       | 357                        | 75.94                        | 2.02                                           | 2.7%                            |
| 100                      | 392                        | 83.29                        | 2.02                                           | 2.4%                            |

# **Table 13.** Upstream CiliwungStorm Rainfall Efficacy

| Return<br>Period<br>Year | Rainfall<br>Plan<br>mm/day | Runoff<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Volume<br>(mil.m <sup>3</sup> ) | Abstraction<br>Perscentage<br>% |
|--------------------------|----------------------------|-------------------------------------------|------------------------------------------------|---------------------------------|
| 2                        | 153                        | 32.50                                     | 2.02                                           | 6.2%                            |
| 5                        | 197                        | 41.95                                     | 2.02                                           | 4.8%                            |
| 10                       | 227                        | 48.20                                     | 2.02                                           | 4.2%                            |
| 25                       | 264                        | 56.11                                     | 2.02                                           | 3.6%                            |
| 50                       | 291                        | 61.97                                     | 2.02                                           | 3.3%                            |
| 100                      | 319                        | 67.79                                     | 2.02                                           | 3.0%                            |

The efficacy of 1 million infiltration well at each sub basin is low, below 10% on average for each return period of both event (daily and stormrainfall) except for 2-years return period of daily rainfall. To achieve this efficacy the infiltration well is assumed empty without filtration materials and permeable area only located at the bottom. The infiltration well effective volume to store rainwater will be lower if filtration material is provided. To increase the efficacy the option is either increase the infiltration well dimension and/or to consider infiltration at the curved surface that often only have limited amount of hole intended to provide infiltration to the side.

Effective infiltration rate around the curved face also has to be carefully calculated because if infiltration is allowed around the infiltration well, by selecting permeable material, the effective infiltration surface should be below the infiltration depth value that used as design. For example, the effective infiltration height is only 1.43 m if infiltration well of 2 m depth is selected and 57 cm/day infiltration is taken. One other thing to be considered is hydraulic conductivity. Infiltration or vertical hydraulic conductivity is more common term used in Civil Engineering, while the horizontal hydraulic conductivity is rarely used. The flow rate along the curved face should be calculated using horizontal hydraulic conductivity rather than using the infiltration rate value. Horizontal hydraulic conductivity is varying greatly along horizontal spatial boundary [16]. To find better efficacy calculation more complex analysis is needed.

### CONCLUSIONS

Data collected and analyze shows that downstream Ciliwung basin had bigger rainfall events compared to upstream basin. But for storm rainfall event, both sub basin experienced relatively the same magnitude of rainfall. Despite smaller daily design rainfall, Upstream Ciliwung experiencing almost the same rainfall rate on the day before and day after as Downstream Ciliwung. Infiltration well efficacy on each rainfall event in Ciliwung basin based on 1 million units (D = 1 m & H = 2 m) are relatively low, below 10% of abstraction of total rainfall volume. Except for upstream Ciliwung rainfall event of 10-year return period. The efficacy is decreasing for higher return period rainfall. At 25-year return period the efficacy is below 5% except for upstream Ciliwung rainfall event. Actual effective infiltration well volume might be less at downstream area, especially North of Jakarta area where sea water intrusion is high and higher groundwater level is expected. In order to increase infiltration well efficacy bigger dimension is favorable than calculating hydraulic conductivity along its horizontal face.

### REFERENCES

- S. Sunjoto, "Infiltration Well and Urban Drainage Concept," dalam *Future Groundwater Resources at Risk*, Helsinki, 1994.
- [2] B. S. Nasional, SNI 8456:2017 Sumur dan Parit Resapan, Jakarta: Badan Standardisasi Nasional, 2017.
- [3] M. Belladona, N. Nasir dan E. Agustomi, "Design of Infiltration Well to Reduce Inundation in Rawa Makmur Village, Bengkulu City," *Journal* of Applied Science and Advanced Technology, pp. 53-58, 2018.
- [4] W. Pattiruhu, A. Sakliressy dan C. Tiwery, "Analisis Sumur Resapan Guna Mengurangi Aliran Permukaan Untuk Upaya Pencegahan Banjir (Studi Kasus Pemukiman Pulogangsa Kota Ambon)," Jurnal Manumata, pp. 9-16, 2019.

- [5] L. Bahunta dan R. S. B. Waspodo, "Rancangan Sumur Resapan Air Hujan sebagai Upaya Pengurangan Limpasan di Kampung Babakan, Cibinong, Kabupaten Bogor," Jurnal Teknik Sipil dan Lingkungan, pp. 37-48, 2019.
- [6] N. F. Januriyadi dan et.al., "Kajian Efektivitas Sumur Resapan Dalam Mengurangi Resiko Bencana Banjir Di Kota Jakarta," dalam Seminar Nasional Teknik Sipil 3, 2019.
- [7] B. Triatmodjo, Hidrologi Terapan, Yogyakarta: Beta Offset, 2008.
- [8] L. M. Limantara, Rekayasa Hidrologi, Malang: Penerbit Andi, 2018.
- [9] D. R. Marthanty, Study on The Use of Horton Infiltration Method to Predict CN Value (Case Study: Sugutamu, Sub-Watershed Ciliwung, West Java, Depok: Universitas Indonesia, 2008.
- [10] S. R. Hape, B. S. Wignosukarto dan Istiarto, "Sustainable Drainage System of Populated Siteba Area, City of Padang, Indonesia," dalam *3rd World Irrigation Forum*, Bali, 2019.
- [11] A. N. Jifa, A. Rachmansyah dan A. Afandhi, "Analysis of Infiltration Well Dimensional in Kedungkandang District, Malang City, Indonesia," *J-PAL*, pp. 33-38, 2018.
- [12] D. Kusumastuti, D. Jokowinarno, S. Khotimah, C. Dewi dan F. Yuniarti, "Infiltration well to reduce the impact of land use changes on flood peaks: a case study of Way Kuala Garuntang catchment, Bandar Lampung, Indonesia," *Hydrology and Earth System Sciences*, vol. 11, pp. 5487-5513, 2014.
- [13] D. Kusumastutri, D. Jokowinarno, S. N. Khotimah dan C. Dewi, "The Use of Infiltration Wells to Reduce the Impacts of Land Use Changes on Flood Peaks: An Indonesian Catchment Case Study," *Pertanika Journal Science & Technology*, vol. 25, no. 2, pp. 407-424, 2017.
- K. P. U. d. P. Rakyat, Pedoman Bidang Jalan dan Jembatan No.15/P/BM/2021, Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2021.
- [15] A. M. Mardiah, C. N. Ainy, M. Bagus dan D. Harlan, "Study on the Effectiveness of Infiltration Wells to Reduce Excess Surface Run Off In ITB," dalam *SIBE 2017*, Kota Bandung, 2018.

[16] T. Kanso, D. Tedoldi, M.-C. Gromaire, D. Ramier, M. Saad dan G. Chebbo, "Horizontal and Vertical Variability of Soil Hydraulic Properties in Roadside Sustainable Drainage Systems (SuDS)—Nature and Implications for Hydrological Performance Evaluation," Water, vol. X, 2018. J. Saintis Volume 22 Nomor 01, 2022

This page is intentionally blank