Pengaruh Penggunaan Doping Vanadium dan Zat Aditif Dithenalomine (DEA) Terhadap Energi Celah Pita SnO2
Keywords:
Semikonduktor, SnO2, Doping, Zat Aditif, Vanadium, Diethanolamine (DEA)Abstract
The high band gap energy in the SnO2 semiconductor makes its photocatalytic activity not optimal. Band
gap energy is a combination of the valence band and conduction band in a semiconductor. Doping and
additives are added to SnO2 because they can reduce the band gap energy of SnO2 thereby increasing
its photocatalytic activity because it only requires low energy for excited electrons. The research aims to
see the effect of using vanadium doping and the additive Diethanolamine (DEA) on reducing the band gap
energy of SnO2. The synthesis method used in this research was the Sol-gel method. The SnO2 synthesis
results can be characterized using a Diffuse-Reflectance Spectrophotometer (UV-DRS). The results show
that pure SnO2 has a band gap energy of 3.48 eV, while SnO2 that has been doped and added with
additives has a band gap energy of 2.25 eV. Vanadium and DEA have been proven to be able to reduce
the band gap energy of SnO2 so that it can be used as a photocatalyst material
Downloads
References
Belfaa, K., Lassoued, M. S., Ammar, S., & Gadri, A. (2018). Synthesis and characterization of V-doped TiO2 nanoparticles through polyol method with enhanced photocatalytic activities. Journal of Materials Science: Materials in Electronics, 29(12), 10269–10276. https://doi.org/10.1007/s10854-018-9080-6
Ben Soltan, W., Mbarki, M., Ammar, S., Babot, O., & Toupance, T. (2016). Structural and optical properties of vanadium doped SnO2 nanoparticles synthesized by the polyol method. Optical Materials, 54, 139–146. https://doi.org/10.1016/j.optmat.2016.01.059
Kasuma, S., Ningsih, W., Kimia, J., Matematika, F., & Ipa, D. (n.d.). Pengaruh Aditif Pada Sintesis Nanopartikel Mn2O3 Melalui Proses Sol-Gel.
Köse, H., Karaal, Ş., Aydin, A. O., & Akbulut, H. (2015). Structural properties of size-controlled SnO2 nanopowders produced by sol-gel method. Materials Science in Semiconductor Processing, 38, 404–412. https://doi.org/10.1016/j.mssp.2015.03.028
Letifi, H., Litaiem, Y., Dridi, D., Ammar, S., & Chtourou, R. (2019). Enhanced Photocatalytic Activity of Vanadium-Doped SnO2 Nanoparticles in Rhodamine B Degradation. Advances in Condensed Matter Physics, 2019. https://doi.org/10.1155/2019/2157428
Liu, B., Wang, X., Cai, G., Wen, L., Song, Y., & Zhao, X. (2009). Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials, 169(1–3), 1112–1118. https://doi.org/10.1016/j.jhazmat.2009.04.068
Patel, G. H., Chaki, S. H., Kannaujiya, R. M., Parekh, Z. R., Hirpara, A. B., Khimani, A. J., & Deshpande, M. P. (2021). Sol-gel synthesis and thermal characterization of SnO2 nanoparticles. Physica B: Condensed Matter, 613. https://doi.org/10.1016/j.physb.2021.412987
Rahayu, S., Herawati, N., wijaya Jurusan Kimia, M., Universitas Negeri Makassar Jl Dg Tata Raya, F., & Tambung, P. (n.d.). Sintesis Nanopartikel Mangan Oksida dengan Metode Sol Gel Dan Uji Aktivitas Katalitik terhadap Degradasi Zat Warna Rhodamin B Jurnal Chemica Vo.
Reddy, C. V., Babu, B., Vattikuti, S. V. P., Ravikumar, R. V. S. S. N., & Shim, J. (2016). Structural and optical properties of vanadium doped SnO2 nanoparticles with high photocatalytic activities. Journal of Luminescence, 179, 26–34. https://doi.org/10.1016/j.jlumin.2016.06.036