Study of the Mechanical Properties of Underwater Concrete in Seawater Environments

Authors

  • Alex Kurniawandy Civil Engineering Department, University of Riau, Jl. HR Soebrantas KM. 12.5, Pekanbaru, 28293, Indonesia.
  • Ismeddiyanto Civil Engineering Department, University of Riau, Jl. HR Soebrantas KM. 12.5, Pekanbaru, 28293, Indonesia.
  • Muhammad Haekal Civil Engineering Department, University of Riau, Jl. HR Soebrantas KM. 12.5, Pekanbaru, 28293, Indonesia.
  • Raudatul Zikri Civil Engineering Department, University of Riau, Jl. HR Soebrantas KM. 12.5, Pekanbaru, 28293, Indonesia.

DOI:

https://doi.org/10.25299/jgeet.2025.10.1.20989

Keywords:

Anti-washout Concrete, Anti-washout Agent, Seawater, Mechanical Properties

Abstract

Anti-washout concrete (AWC) is a specialized cement-based material designed to be applied directly in underwater environments, maintain mix integrity, and prevent material washout. AWC can. This research aims to evaluate the performance of anti-washout concrete in seawater environments containing chemical compounds aggressive to concrete, by examining the ability of concrete to withstand loads, resistance to washout, and structural stability when exposed to seawater environments. The test methods used included aggregate characteristics, slump flow, compressive strength, split tensile strength, and flexural strength at 7, 14, 28, and 56 days of concrete age. The results showed that concrete with fresh water (AB) had higher compressive, split tensile, and flexural strengths than concrete using artificial seawater (AL), with a decrease in compressive strength in AL against AB of 7.29% at 14 days, 11.20% at 28 days, and 12.69% at 56 days. AWC met the minimum compressive strength requirement of 70% of the Japan Society of Civil Engineers (JSCE) standard, indicating that AWC with artificial seawater remains viable for underwater construction applications. This study's results are expected to guide the use of anti-washout concrete for various underwater applications, particularly to improve durability and reduce long-term maintenance costs for underwater infrastructure.

Downloads

Download data is not yet available.

References

Ali Sikandar, M., Wazir, N. R., Khan, M. A., Nasir, H., Ahmad, W., & Alam, M. (2020). Effect of various anti-washout admixtures on the properties of non-dispersible underwater concrete. Construction and Building Materials, 245.

Atash Beik, M. R., Moghadam, K. Y., Noori, M., Altabey, W. A., Chang, X., Liu, C., Wang, X., & Noroozinejad Farsangi, E. (2024). Using Biopolymers as Anti-Washout Admixtures under Water Concreting. Buildings, 14(4).

Bartos, P. J. M. (2005). Testing-SCC: towards new European standards for fresh SCC. Proceedings of the First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, Changsha, Hunan, Kina, 25–46.

Bartos, P. J. M., Sonebi, M., & Tamimi, A. K. (t.t.). TC145 WSM.

Bessaies-Bey, H., Khayat, K. H., Palacios, M., Schmidt, W., & Roussel, N. (2022). Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology. Cement and Concrete Research, 152, 106646.

Chen, W., Zhou, Y., Yu, Q., Zhan, B., Li, W., Xiong, C., Chen, S., Cheng, L., & Zheng, Y. (2024). Microscopic thickening mechanisms of hydroxypropyl methyl cellulose ether anti-washout admixture and its impact on cementitious material rheology and anti-dispersal performance. Journal of Building Engineering, 89, 109346.

Efiandi, D., Alhadi, A., Badarudin, (2020). Pengaruh Pemakaian Aditif Anti Washout Agent (AWA) Terhadap Sifat Fisik dan Mekanis Beton Dengan Variasi Aliran Turbulen dan FAS 0.50 pada Pengecoran Bawah Laut. Sigma Teknika 3, 200–207.

Harmiyati, Al Ihsyan, N., Syahputri, D., (2024). Analysis of the Effect of Bagasse Addition on Compressive Strength, Porosity, and Permeability of Pervious Concrete as Material for Green Building Program. Journal of Geoscience, Engineering, Environment, and Technology 9, 420–425.

Heniegal, A., Abd, A., Maaty, A., & Agwa, I. (2016). Influence of anti washout admixtures and coarse aggregate types on self-flowing underwater concrete properties. Journal of Civil and Structural Engineering, 6, 245–262.

Heniegal, A. M. (2016). Developing Underwater Concrete Properties with and without Anti-washout Admixtures. International Journal of Scientific & Engineering Research.

Hosseinpoor, M., Koura, B.-I. O., & Yahia, A. (2021). New diphasic insight into the restricted flowability and granular blocking of self-consolidating concrete: Effect of morphological characteristics of coarse aggregate on passing ability of SCC. Construction and Building Materials, 308, 125001.

Japan Society of Civil Engineers (JSCE). (1992). Recommendations for design and construction of anti-washout underwater concrete. Concrete Library of JSCE.

Khayat, K. H., & Hester, W. T. (1991). Evaluation of concrete mixtures for underwater pile repairs. Cement, Concrete, and Aggregates, 13(1), 32–41.

Lange, A., Hirata, T., & Plank, J. (2014a). Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cement and Concrete Research, 60, 45–50.

Lange, A., Hirata, T., & Plank, J. (2014b). Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cement and Concrete Research, 60, 45–50.

Lawrence, C. D. (1990). Sulphate attack on concrete. Magazine of concrete Research, 42(153), 249–264.

Li, L.G., Chen, X.Q., Chu, S.H., Ouyang, Y., Kwan, A.K.H., (2019). Seawater Cement Paste: Effects of Seawater and Roles of Water Film Thickness and Superplasticizer Dosage. Constr Build Mater 229.

Lu, H., Sun, X., & Ma, H. (2022). Anti-washout Concrete: An overview. Dalam Construction and Building Materials (Vol. 344). Elsevier Ltd.

Lu, H., Sun, X., Ma, H., (2022). Anti-washout Concrete: An Overview. Constr Build Mater.

Mahindrakar, A. B. (2017). Impact of aggressive environment on concrete–a review. Technology, 8(9), 777–788.

Mihiretu, Y. (2009). Fundamentals of segregation.

Mildawati, R., Puri, A., Handayani, M.Z., (2022). Effects of Corn Stalks Ash as A Substitution Material of Cement Due to the Concrete Strength of Rigid Pavement. Journal of Geoscience, Engineering, Environment, and Technology 7, 21–26.

Nasr, A. A., Chen, S., Wang, Y., Jin, F., & Qiu, L. C. (2022). Strength evaluation of a new underwater concrete type. Case Studies in Construction Materials, 16.

Palacios, M., & Flatt, R. J. (2016). Working mechanism of viscosity-modifying admixtures. Dalam Science and technology of concrete admixtures (hlm. 415–432). Elsevier.

Park, J. J., Moon, J. H., Park, J. H., & Kim, S. W. (2014). An estimation on the performance of high fluidity anti-washout underwater concrete. Key Engineering Materials, 577–578, 501–504.

Rasekh, H., Joshaghani, A., Jahandari, S., Aslani, F., & Ghodrat, M. (2020). Rheology and workability of SCC. Dalam Self-compacting concrete: materials, properties and applications (hlm. 31–63). Elsevier.

Rich, D., Glass, J., Gibb, A. G. F., Goodier, C. I., & Sander, G. (2017). Optimising construction with self-compacting concrete. Proceedings of the Institution of Civil Engineers-Construction Materials, 170(2), 104–114.

Saxena, S., & Baghban, M. H. (2023). Seawater concrete: A critical review and future prospects. Dalam Developments in the Built Environment (Vol. 16). Elsevier Ltd.

Schulze, D., & Schulze, D. (2021). Segregation. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, 479–537.

Simanjuntak, R. (2016). Pengaruh Konsentrasi Alkali Terhadap Penetrasi Ion Chlorida pada Beton Geopolimer. Surabaya: Institut Teknologi Sepuluh Nopember.

Song, X., Zheng, H., Xu, L., Xu, T., & Li, Q. (2024). Comparative Study of the Performance of Underwater Concrete between Anionic and Nonionic Anti-Washout Admixtures. Buildings, 14(3), 817.

Wang, J., Xie, J., Wang, Y., Liu, Y., Ding, Y., (2020). Rheological Properties, Compressive Strength, Hydration Products and Microstructure of Seawater-mixed Cement Pastes. Cem Concr Compos 114.

Wang, Y., Chen, S., Qiu, L., Nasr, A.A., Liu, Y., 2023. Experimental study on the slump-flow underwater for anti-washout concrete. Constr Build Mater 365, 130026.

Wedhanto, S., (2017). Pengaruh Air Laut terhadap Kekuatan Tekan Beton yang Terbuat dari Berbagai Merk Semen yang Ada di Kota Malang. Jurnal Bangunan 22, 21.

Wu, S., Ge, Y., Jiang, S., Shen, S., & Zhang, H. (2021). Experimental study on the axial compression performance of an underwater concrete pier strengthened by self-stressed anti-washout concrete and segments. Materials, 14(21).

Yahya, Z., Abdullah, M. M. A. B., Li, L. Y., Nergis, D. D. B., Hakimi, M. A. A. Z., Sandu, A. V., Vizureanu, P., & Razak, R. A. (2021). Behavior of alkali-activated fly ash through underwater placement. Materials, 14(22).

Yi, Y., Zhu, D., Guo, S., Zhang, Z., & Shi, C. (2020). A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement and Concrete Composites, 113.

Yogafanny, E., Triatmadja, R., Nurrochmad, F., Supraba, I., (2024). Pervious Concrete and Pervious Mortar as Water Filter in Decentralized Water Treatment– a Review. Journal of Geoscience, Engineering, Environment, and Technology 9, 69–76.

Zhang, C., Li, J., Yu, M., Lu, Y., & Liu, S. (2024). Mechanism and Performance Control Methods of Sulfate Attack on Concrete: A Review. Dalam Materials (Vol. 17, Nomor 19). Multidisciplinary Digital Publishing Institute (MDPI).

Zhang, Z., Xiao, J., Zhang, Q., Han, K., Wang, J., & Hu, X. (2021). A state-of-the-art review on the stability of self-consolidating concrete. Construction and Building Materials, 268, 121099.

Downloads

Published

2025-03-18 — Updated on 2025-03-31

Versions