Mechanism Formation Carbon Dioxide Around Muriah Trough And Bawean Arc, North East Java Basin, Indonesia
DOI:
https://doi.org/10.25299/jgeet.2025.10.1.19121Keywords:
Geochemistry, Carbon Dioxide, Muriah, BaweanAbstract
CO2 content in natural gas in Muriah Trough and Bawean Arc, North East Java Basin. Understanding the origin and distribution of carbon dioxide is important for the research of natural gas exploration risk. This research uses gas geochemistry to identify the origin of carbon dioxide formation around the Muriah Trough and Bawean Arc. The chemical composition of CO2 and δ13CCO2 was measured in 10 gas samples taken from 6 exploration wells around the Muriah Trough. The results of the analysis indicate the origin of the carbon dioxide and carbon dioxide mechanism around Muriah Trough and Baswean Arc derived from organic and inorganic processes. The process of forming the carbon dioxide mechanism around the Muriah Trough and Bawean Arc is dominated by inorganic processes, presumably derived from the mantle degassing process. The mantle Deggasing process was related to volcanism Muriah and Bawean the Late Miocene-Pliocene.
Downloads
References
Ahsan, S.A., Khoso, T.A, and Maroof M., 2003 Understanding gas composition variation over Mari Gas Field implication for gas quality predictions, Proceedings of SPE Annual Technical Conference.
Bellon, H., Soeria-Atmadja, R., Maury, R.C., Suparka, E. dan Yuwono, Y.S., 1989, Chronology and Petrology of Back Arc Volcanism in Java. In: Koesoemadinata, R.P. and Noeradi, D. (ed)., 2003. Indonesian Island Arcs: Magmatism, Mineralization and Tectonic Setting. Bandung Institute of Technologies Publisher, Indonesia, 174-186.
Bransden, P.J.E. and Matthew, S.J., 1992. Structural and stratigraphic evolution of The East Java Sea, Indonesia, Proceedings Indonesia Petroleum Association, 21, 417-453
Cooper, B.A., Raven, M.J., Samuel, L., Hardjono, Satoto, W., 1997, Origin and geological controls on subsurface CO2 distribution with examples from Western Indonesia, Proceedings, Petroleum Systems of SE Asia and Australasia Conference, Indonesian Petroleum Association, p. 877-892.
Dai, J., Zou.X., Liao, S., Dong, D., Ni, Y., Huang, J., Wu, W., Gong, D., Huang, S., Hu, G., 2014, Geochemistry of The Extremely High Thermal Maturity Longmaxi Gas Shale Gas, Southern Sichuan Basin, Org. Geochem. 74, 3-12.
Dunn, H., J, P., Malinovsky, D., Ogrinc, N., Potocnik, D., Flierl, L., Rienitz, O., Paul, D., Meijer, J., A., H., 2024, Redetermination of R(13C/12C) for Vienna Peedee Belemnite (VPDB), Rapid Communications in Mass Spectrometry, 38, 16.
Guang, Y., Zhanyin, Z., Mingli, S., ,2011, Formation of Carbon Dioxide and Hydrocarbon Gas Reservoir In The Changling Fault Depression, Songliao Basin, Petroleum Exploration and Development. Vol. 38, Issue 1, February 2011., Science Direct.
Humaida, H., 2005, Kajian Isotop Karbon CO2 dan CH4 di Wilayah Barat Pengunungan Dieng dengan Gas Chromatography-Isotop Ratio Mass Spectrometer (GC-IRMS), Indo J. Chem., 5, 1, 11-14.
Husein, S. dan Nurkman, M. (2015): Rekontruksi tektonik mikrokontinen Pegunungan Selatan Jawa Timur: Sebuah hipotesis berdasarkan analisis kemagnetan purba, Proceeding Seminar Nasional Kebumian, 8.
Katz, B.J., 2002, Gas geochemistry: a key to understanding formation and alteration processes, Proceedings Indonesia Petroleum Association, 28, 789-802.
Khan, M.R., and Ahmad, H., 1992, Origin of non-associated gases in Pakistan, in: Presented at First South Asia Geological Congress, Islamabad.
Khan, M. A., and Raza, H. A., 1986, The role of geothermal gradients in hydrocarbon exploration in Pakistan. Journal of Petroleum Geology, 9, 3, 245-258.
Lunt, P., 2013, The sedimentary geology of Java, Indonesian Petroleum Association.
Nazzer, A., Tariq, T., Murtaza, G., Shah, S.H., and Danyal, An Overview of the distribution of inert Gasses in Deeper Reservoir of Sulaiman Fold Belt Pakistan, 2012, Oral Presentation Given at SPE 2012, Islamabad, Pakistan.
Nazeer, A., Shah, S.H., Murtaza, G., and Solangi, S.H., Possible origin of inert gases in hydrocarbon reservoir pools of The Zindapir Anticlinorium, and its surroundings in The Middle Indus Basin, Pakistan, Geodesy and Geodynamics,9, 456-473.
Prahantanto, B.I., Setiawan, D.A., dan Dwiperkasa, D.W., 2016, Biogenic potential, North of East Java Basin, International Conference on Petroleum Geochemistry in the Africa-Asia Region, 9, Extend Abstract.
Prasetyadi, C., 2007, Evolusi Tektonik Paleogen Jawa Bagian Timur, Tesis S3, Institut Teknologi Bandung, Indonesia.
Qian F., 1991, Study on the geochemical thermodynamic nature of CO2-CH4 and CO2 rich gas, Journal of Southeast Asian Earth Science, 5, 1-4.
Rice, D.D. dan Claypool, E. G., 1981, Generation accumulation, and resource potential of biogenic gas, The American Association of Petroleum Geologists, 25-1, 5-25.
Roniwibowo, A., 2014, Studi Pendahuluan: Potensi Gas Biogenik-Termogenik Pada Area Tinggian Bawean, Cekungan Muriah, Laut Jawa Utara, Proceedings PIT IAGI Jakarta.
Saqi, M.I., and Jamil M.A.,2000, Distribution of non-hydrocarbon gases in central Indus Basin, in: Proceedings of SPE-PAPG Annual Technical Conference.
Satyana, A.H., 2005, Oligo-Miocene carbonates of Java, Indonesia: Tectonic-Volcanic Setting and Petroleum Implications, Proceedings Indonesia Petroleum, 30, 217.
Satyana, A.H. and Purwaningsih, M.E.M., 2003, Geochemistry of the East Java Basin: New observations on oil grouping, genetic gas types, and trends of hydrocarbon habitats. Proceedings Indonesian Petroleum Association, 29, 1-23.
Soeria-Atmadja, R., Maury, R., C, Bellon, H., Pringgoprawiro, H., Polve, M., and Priadi, B., 1994, Tertiary magmatic belts in Java. Journal of Southeast Asian Sciences, 9, 13-17.
Smyth, H., 2005, Eocene to Miocene Basin History and Volcanic Activity in East Java, Indonesia. PhD Thesis University of London, 476.
Sofer, Z., 1984, Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration, The American Association of Petroleum Geologists Bulletin, 68, 31-49.
Speight, J.G., 2017, Deep Shale Oil and Gas, Elsevier, Inc., United State, Chapter 7: 307-347.
Sribudiyani, Mucin, N., Ryacudu, R., Kunto, T., Astono, P., Prasetya, I., Sapiie, B., Asikin, S., Harsolumakso, A.H., and Yulianto, I, 2003, The collision of the East Java Microplate and its implication for Hydrocarbon occurrences in the East Java Basin, Proceedings Indonesia Petroleum Association.
Wang, W. Ji.L, Song, D., Zhang D., Lu, C., Su, Long., 2022, Origin of Inorganic Carbon Dioxide Associated With
Hydrocarbon Generation: Evidence From Hydrous Pyrolysis Experiments and Natural and Shale Gas, Journal of Asian Earth Sciences: X, 7, 1-17.
Zhang, T., Zhang, M., Bai, B., Wang, X., and Li, L., 2008, Origin and accumulation of carbon dioxide in the Huanghua Depression Bohai Bay Basin, China, The American Association of Petroleum Geologists Bulletin, 92-3, 341-358.

Downloads
Published
Versions
- 2025-03-31 (2)
- 2025-03-13 (1)
Issue
Section
License
Copyright (c) 2025 Journal of Geoscience, Engineering, Environment, and Technology

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2019. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Copyrights of all materials published in JGEET are freely available without charge to users or / institution. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.