Introduction

Geo-electrical survey is a survey that looking the physical parameters which is resistivity value to differentiate subsurface material. Recently, the interest of underground sources of water is increasing rapidly to fulfill the water demand. Pekanbaru is a city that use groundwater as main source of clean water. Parallel with increasing of population in Pekanbaru, waste production also increasing.

The study area is an open dumping landfill at Marpoyan that have potential to produce leachate. As we known that open dumping landfill is a primitive way to dispose the waste without any technology to prevent the contamination through subsurface. The location of landfill become a big problem because it surrounded by residence area (Figure 1). So the aim of this study is to detect the probability of groundwater contamination from leachate leaded by open dumping landfill.

Methods

ABEM SAS1000 resistivity meter and ABEM Lund ES464 selector system is the equipment that used to collect the resistivity data. The survey employed 61 multi-electrodes with 5 m minimum electrode spacing. The line survey length is reach 400 m that arranged in a straight line. The selector system was connected with all electrodes through multi-core cable (Figure 2) (Hamzah et al., 2008; Loke and Barker, 1995; A. Suryadi et al., 2019). In each measurement the resistivity meter only select four electrodes to activate. Beside of that, coordinate of line survey must be recorded to correlate all the lines taken (Kausarian et al., 2018; Lubis et al., n.d.; Suryadi, 2016).

Apparent resistivity (\(\rho_a\)) calculated by multiple of geometry factor (\(k\)) with Voltage (\(V\)) and divided by Current (\(I\)) injected.

\[
\rho_a = k \frac{V}{I} \tag{1}
\]
Geometry factor (k) is depend on configuration electrode that utilized. In this study configuration used id pole-dipole (Figure 5) that k calculated with formula: 

\[ k = \frac{2\pi (b(a+b))}{a} \]  

(2)

Fig 2. Equipment set up to acquisition resistivity data (Loke and Barker, 1995).

Fig 3. Hand Auger equipment to get shallow geological profile

Fig 4. Equipment for groundwater quality analysis (Ph, temperature, TDS and conductivity).

The data collected processed by using inverse modelling software which is RES2DINV. The result of inverse modelling will interpreted based on apparent resistivity and proven by drilling data. Some supporting data also collected like subsurface condition using hang auger to get the real data of geology. The equipment hand auger is shown at Figure 3. The depth maximum of hand auger only 10 m from the surface. Else from hand auger, another supporting data taken is groundwater elevation and groundwater quality (Figure 4). This data can prove that groundwater already contaminated or not.
3. Results and Discussion

Interpretation from 3 survey line shown that contamination from leachate only affected surface. Based on resistivity value there are 3 types of layer (Figure 5) which is low resistivity value (L1), moderate resistivity value (L2) and high resistivity value. Low resistivity value is ranging from 26.1 – 870 Ωm that interpreted as wet clay and sand. Moderate resistivity value has value 269 – 3319 Ωm that interpreted as dry clay. The highest resistivity value is 2276 – 91770 Ωm interpreted as dry sand. From this interpretation dry clay (L2) become the preventer for penetration of leachate. That why in the beginning we mention that contamination only affect surface layer and not yet contaminate the groundwater. This statement also proven by result of hand auger that resulting there is clay layer at depth below 2 meters. The comparison between resistivity result and can be seen at table 2.

Fig 5. Result of resistivity survey from survey line 1, 2 and 3 that shown there are 3 layers named as L1, L2 and L3.

Fig 6. Hand Auger result that shown geological profile of subsurface at study area.
Table 1. Interpretation of resistivity results.

<table>
<thead>
<tr>
<th>Survey Line</th>
<th>Layer</th>
<th>Resistivity Value (Ωm)</th>
<th>Depth (m)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey line 1</td>
<td>L1</td>
<td>26,1 – 269</td>
<td>0 – 3</td>
<td>Top soil (wet)</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>269 – 2775</td>
<td>1 – 6</td>
<td>Dry clay</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>2776 – 91770</td>
<td>5 – 9,6</td>
<td>Dry sand</td>
</tr>
<tr>
<td>Survey line 2</td>
<td>L1</td>
<td>82,4 – 471</td>
<td>0 – 3</td>
<td>Peat mixed with clay and sand</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>471 – 2687</td>
<td>2 – 5</td>
<td>Clay</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>2687 – 36669</td>
<td>3 – 9,6</td>
<td>Dry sand</td>
</tr>
<tr>
<td>Survey line 3</td>
<td>L1</td>
<td>228 – 870</td>
<td>0 – 3</td>
<td>Peat mixed with clay and sand</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>870 – 3319</td>
<td>2 – 6</td>
<td>Clay</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>3319 – 24713</td>
<td>3 – 9,6</td>
<td>Dry sand</td>
</tr>
</tbody>
</table>

Another supporting data that parallel with interpretation that state groundwater is not contaminated by leachate yet is groundwater quality. As the result from 6 wells sampling (figure 7) around the study area showing 5 wells is in normal condition at variable TDS, Ph, temperature dan conductivity (Table 3). TDS ranging from 35.0 – 81.0 mg/L, Ph ranging from 3 – 7, temperature ranging from 29.4 – 30.2°C and conductivity ranging from 58.6 – 135.5 μS/cm, the well that contaminated only well from landfill area. Contamination clearly shown at variable TDS and conductivity that has very high value (207.9 mg/L for TDS and 344.3 μS/cm. Based on groundwater flow we predict that contamination will migrate to Northeast from study area.

Fig 7. Location of groundwater sampling for groundwater quality analysis.

Table 2. Comparison between resistivity result and hand auger results.

<table>
<thead>
<tr>
<th>Resistivity Interpretation</th>
<th>Log Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Layer</strong></td>
<td><strong>Resistivity Value (Ωm)</strong></td>
</tr>
<tr>
<td>L1</td>
<td>26,1 – 870</td>
</tr>
<tr>
<td>L2</td>
<td>269 – 3319</td>
</tr>
<tr>
<td>L3</td>
<td>2776 – 91770</td>
</tr>
</tbody>
</table>

Table 3. Groundwater quality result.

<table>
<thead>
<tr>
<th>NO</th>
<th>Well No.</th>
<th>Coordinate</th>
<th>TDS (mg/L)</th>
<th>Ph</th>
<th>Temperature (°C)</th>
<th>Conductivity (μS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SM1</td>
<td>N 00 26° 56.33&quot; / E 101 27° 53.58&quot;</td>
<td>64.9</td>
<td>6.07</td>
<td>29.6 C</td>
<td>108.6</td>
</tr>
<tr>
<td>2</td>
<td>SM2</td>
<td>N 00 26° 55.35&quot; / E 101 27° 48.04&quot;</td>
<td>47.2</td>
<td>5.87</td>
<td>30.2 C</td>
<td>79.9</td>
</tr>
<tr>
<td>3</td>
<td>SM3</td>
<td>N 00 27° 03.12&quot; / E 101 27° 55.05&quot;</td>
<td>62.6</td>
<td>5.94</td>
<td>29.4 C</td>
<td>104.3</td>
</tr>
<tr>
<td>4</td>
<td>SM4</td>
<td>N 00 27° 00.04&quot; / E 101 27° 49.53&quot;</td>
<td>81.0</td>
<td>6.13</td>
<td>29.6 C</td>
<td>135.5</td>
</tr>
<tr>
<td>5</td>
<td>SM5</td>
<td>N 00 26° 55.91&quot; / E 101 27° 51.35&quot;</td>
<td>35.0</td>
<td>6.28</td>
<td>29.6 C</td>
<td>58.6</td>
</tr>
<tr>
<td>6</td>
<td>SM6</td>
<td>N 00 26° 57.81&quot; / E 101 27° 51.93&quot;</td>
<td>207.9</td>
<td>6.37</td>
<td>29.0 C</td>
<td>344.3</td>
</tr>
<tr>
<td>7</td>
<td>Aquades</td>
<td>N 00 26° 57.81&quot; / E 101 27° 51.93&quot;</td>
<td>5.8</td>
<td>6.52</td>
<td>29.0 C</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Fig 8. Groundwater elevation map that show the probability of contaminant migrate to Northeast from study area.
4. Conclusion

Technology of sustainable landfill must be apply to all landfill in Pekanbaru to prevent the contamination of groundwater. It very important because majority of society in Pekanbaru use groundwater as the main source of clean water. This study shown that contamination of leachate fortunately prevented by clay layer of study area. That layer is an impermeable media that can’t transfer fluid. Beside that, the groundwater quality analysis also shown there is no contaminant detected at groundwater except well at landfill. The contamination of leachate represented by high TDS and conductivity value. The probability of migration contaminant is predicted to northeast from study area.

Acknowledgements

The authors would like to give an acknowledgment to Department of Research and Community Service as funder of this research with contract No. 670/KONTRAK/LPPM-Ulir/5-2019. Additional thanks to Geology laboratory of UIR that provide all the equipment of this study and lastly to all our students that help us during data acquisition at field.

References


© 2020 Journal of Geoscience, Engineering, Environment and Technology. All rights reserved. This is an open access article distributed under the terms of the CC BY-SA License (http://creativecommons.org/licenses/by-sa/4.0/).

Suryadi et al./ JGEET Vol 5 No 2/2020 113