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Abstract 

Mapping the extent and quantifying oil slick in ocean spills is one of the major objectives for monitoring and clean-up programs. 
Hyperspectral sensors are among the few remote sensing tools with potential for quantifying hydrocarbon oil on water and on other 
background substrates. At present, methods used to process hyperspectral data for quantifying hydrocarbon oil relies on delineating 
shapes and wavelength position of key diagnostic features within shortwave infrared (SWIR), particularly at 1.73µm and 2.30µm, which 
are often affected by the spectral features from the background substrates. Rather than the shape, the absorption maxima of hydrocarbon 
diagnostic features has shown potential for quantifying oil slick abundance classes via the Hydrocarbon Spectral Slope index (HYSS). In 
this research, the discriminative power of HYSS index for quantifying ocean oil slick is demonstrated, using Advance Visible and Infrared 
Imaging Spectrometer (AVIRIS) data from the 2010 Deep-water Horizon (DHW) spill from the Macondo well-head in the Gulf of Mexico. 
The results suggest good discrimination of oil and water as well as quantification of the oil slick into different oil abundance classes, 
representing different oil-water ratio and/or thickness. The validation of HYSS results shows good agreement with visual records of the 
spill within the image scene. Five oil abundance classes were discernible from studied AVIRIS scenes. These results were obtained 
empirically, without site-specific reference spectra, suggestive of a potential index for rapid broad area search. Change detection statistics 
of oil coverage at three separate intersects (ITT 1, ITT 2, and ITT 3) with before and after image coverage show reduced oil coverage 
percentages of 70%, 11.5%, and 0% respectively. These percentage reductions are in agreement with visual display of oil coverage as 
affected by dispersion induced by ocean currents and chemical dispersant application within the respective time lags of these image data 
acquisition.  
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1. Introduction  

An estimated 2.9 million metric tons of hydrocarbon oil 
was spilled in the world oceans between 1980 to 1989 
while an additional 600,000 metric tons are estimated as 
yearly contribution from seepages from around the world 
(Kvenvolden and Cooper 2003, Etkin 2001) This pollution 
trend is increasing across the globe especially with recent 
net increases in oil production (Li et al. 2016). Oceanic oil 
spills across the globe result from human activities such as 
oil exploration and transportation (National Research 
Council 2003, Leacock 2005). Fresh and weathered oils 
have devastating effects on the marine ecosystem and 
human life (Tatem, Cox, and Anderson 1978, Obida et al. 
2018, Liu et al. 2016, Waldichuk 1974). Quantifying oil slick 
abundance during and after spill events is vital for oil spill 
monitoring and clean-up programs (Fritt-Rasmussen et al. 
2012, Shi et al. 2016, Fritt-Rasmussen and Brandvik 2011, 
Sarbatly, Krishnaiah, and Kamin 2016, Bullock et al. 2017). 
Consequently, attempts to detect and quantify hydrocarbon 
oils in the ocean has been given significant attention in 
previous work (Clark et al. 2010, Lu, Zhan, and Hu 2016, 

Scafutto and Souza Filho 2016). Hyperspectral imaging 
offers potential to quantify and characterize hydrocarbons 
even on different background substrates, including water 
(Clark et al. 2010, Lammoglia and Filho 2011, Lammoglia 
and Filho 2012, Lammoglia and Souza Filho 2012a, 
Asadzadeh and de Souza Filho 2016, Kühn, Oppermann, and 
Hörig 2004b, Wettle et al. 2009, Allen and Krekeler 2010, 
Estes and Senger 1971, Fingas and Brown 2017). 
Hydrocarbon oil exhibits diagnostic spectral signatures in 
the short wave infrared region (SWIR); particularly around 
1.20µm, 1.73µm, and 2.30µm wavelength positions (Clark 
et al. 2010, Kühn, Oppermann, and Hörig 2004a, Andreoli et 
al. 2007). These absorption features correspond to 
overtones and combination bands common in 
hydrocarbons, which has been proved useful for 
discriminating and quantifying oil slicks types and against 
different backgrounds (Clark et al. 2010, Lammoglia and 
Filho 2011, Kühn, Oppermann, and Hörig 2004b, Scafutto 
and Souza Filho 2016).  The shapes and wavelength 
position of these key hydrocarbon features are significant 
parameters that provides quantitative information on 
hydrocarbon oil. Presently, there are multiple methods for 
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extracting relevant information for quantitative analysis of 
hydrocarbon on hyperspectral data including 
chemometrics, artificial neural networks, and other similar 
statistical models (Lammoglia and Filho 2011, Lammoglia 
and Souza Filho 2012b, Lammoglia and Filho 2015, Clark et 
al. 2010). These data analysis techniques rely on shapes of 
diagnostic absorption features. Therefore, error in 
delineating these parameters may lead to inadequate data 
or misleading interpretations. This is a feasible due to the 
complex chemistry of hydrocarbons, especially crude oil, 
and is further complicated when background substrates 
interference with the hydrocarbon spectral features. In 
contrast, the HYSS index uses absorption depth maxima of 
the most persistent diagnostic absorption features, with 
proven potential for characterizing and quantifying 
hydrocarbon oil (Olagunju et al., 2023). In this study, we 
aim to investigate the capability of hydrocarbon spectra 
slope model (HYSS) for quantitative evaluation of 
hydrocarbon oil, using hyperspectral data of marine oil 
slicks.  

In this study, we quantified the floating oil slick from the 
Deep-water Horizon event on AVIRIS data using oil-water 
ratios and oil thickness as a proxy to measure relative oil 
abundance. HYSS index is a spectral ratio of reflectance and 
wavelengths at absorption maxima of key hydrocarbon oil 
diagnostic features at 1.73µm and 2.30µm (Olagunju et al., 
2023). Oil-water ratios with higher oil content often have 
higher reflectance than those with less oil, which tend to 
have very low reflectance (Clark et al. 2010). Previous 
authors have determined that the absorption features at 
1.73µm and 2.30µm are persistent against interfering 
effects from most background substrates (Scafutto and 
Souza Filho 2016, Kühn, Oppermann, and Hörig 2004a, 
Clark et al. 2010). A slope formed between these points 
provides a quantification and characterisation of different 
classes of oil abundance due to difference in oil-water ratios 
and thickness (Olagunju et al., 2023). Oil slick emulsion 
often occurs in different oil-water ratios, due to the mixing 
effect of the ocean current (Svejkovsky et al. 2016, 
Svejkovsky and Muskat 2006, Lammoglia and Filho 2011).  
HYSS resolves higher oil-water ratios and thicker oil as a 
steeper slope than lower ratios and less thick oil, which tend 
to have a more gentle slope. In the case of clean water, a 
slope approaching zero is common since reflectance values 
at both points is similar due to water’s strong absorption in 
the SWIR. Therefore, a slope value is a measure of relative 
oil abundance both in term of oil-water ratio and oil 
thickness. This study demonstrates the quantification of 
relative oil abundance, using the data of the Deep-water 
Horizon (DWH) spill in the Gulf of Mexico in 2010. 

The DWH spill remains the largest marine spill in 
history and it is only ranked second to the Kuwait-Iraq war 
(onshore) spill as the largest recorded spill in the world 
history (Leacock 2005, Murphy et al. 2016, Fingas 2016). 
DWH is also the most studied of all spill events (Murphy et 
al. 2016) with a large archive of hyperspectral data. This 
spill lasted eighty-seven (87) days, provided ample 
opportunity to produce a large marine spill footprint and oil 
emulsions with a variety of different oil-water ratios and 
varying thicknesses (Svejkovsky et al. 2016, Sun et al. 2016, 
Clark et al. 2010). Advanced Visible and InfraRed Imaging 
Spectrometer (AVIRIS) was flown over the DWH spill; data 
acquired on May 17, 2010 covered a significant part of the 
spill with limited cloud cover. These data include lines 8 to 
14 as shown in figure 1 below. After pre-processing, HYSS 
index was applied to this dataset, which provide new 
insights into the quantification of the oil slick and also 

reveal a potential for the use of these methods as tool for 
rapid response in ocean spill management. Furthermore, as 
a simple normalized index, HYSS requires very little 
computational time and minimal spectral channels for oil 
slick quantification (Olagunju et al, 2023).   

2.  Data, Materials and Methods 

2.1 Dataset 

The AVIRIS data portal from United States Geological 
Survey (USGS) hosts all AVIRIS data flown from 2006. We 
used flight lines 08 to 14 over the DWH spill for this case 
study. Some of these flight lines (Runs 10, 11, and 14) cover 
the core of the spill on May 17, 2010, with limited cloud 
cover (see figure 1 below). Data from Moderate Resolution 
Imaging Spectrometer (MODIS) is displayed in the 
background in this figure, overlaid by the AVIRIS flight lines. 
The AVIRIS flight lines are already orthorectified, therefore, 
the only pre-processing was converting the data from 
radiance to reflectance (section 4.1). We then applied the 
HYSS index to the data.  The summary of the theory of HYSS 
is explained in section 3.0 while the reader is referred to 
Olagunju et al 2023 for details.  

 

Fig 1. AVIRIS flight lines (Line 8 – 14) acquired on 17th of May, 
2010 over the core of the Deepwater Horizon Spill in the Gulf of 
Mexico. The background image is the MODIS data from the same 

day (Clark et al., 2010). 

2.2 Pre-processing 

As mentioned above, AVIRIS data are available already 
orthorectified from the AVIRIS data portal. Generally, we 
explore data and metadata to check for possible gross error.  
Afterward, we used the Fast Line-of-sight Atmospheric 
Analysis for Hypercube data (FLAASH) algorithm to remove 
the atmospheric contribution and convert the data from 
radiance to reflectance for all flight lines (Kaufman et al. 
1997). The estimated water vapour and scene-average 
visibility within the flight scenes range between 2.64cm to 
3.67cm and 26.4km to 62.1km, respectively. Subsequently, 
these data were checked for bad bands due to system noise 
and water absorption features. The range of bad bands 
observed across all image scenes are within bands 57- 69 
(899.72nm – 1005.56nm); bands 79 – 87 (1101.52nm – 
1177.92nm); bands 102 – 121 (1303.23nm – 1492.65nm); 
bands 149 – 177 (1771.63nm – 2027.57nm); and bands 215 
– 224 (2406.88nm – 2496.23nm). These ranges of bad 
bands were removed manually, by reviewing the data for 
the typical abnormalities in the common target spectra due 
to lingering atmospheric absorption/scattering and low 
signal to noise ratios. The target features used for this 
purpose are; cloud, water surface, dark areas (area of little 
or no illumination), vegetation, land (where available) and 
the surface oil at varying illumination conditions. 
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Therefore, the product of this pre-processing stage is a 
reflectance image of each flight line with bad bands 
removed. Note that the removed bands are not close (i.e., 
within 40 nm) to any hydrocarbon bands and those used in 
HYSS index. 

2.3 Hydrocarbon Slope Map 

Hydrocarbon Spectra Slope (HYSS) index is the ratio of 
the difference in reflectance of the absorption maxima 
depth of key hydrocarbon bands to the difference in their 
corresponding wavelength intervals (Olagunju et al, 2023). 
In other words, the slope value measures the absorption 
depth of these hydrocarbon spectral features, which 
changes with oil-water ratio and thickness, hence, it can 
serve as a proxy for measuring relative oil abundance. 
Equation 1 represents the mathematical expression for 
HYSS, which was computed for each image pixel from the 
AVIRIS runs.  Scene areas with high oil abundance (oil-
water ratio with higher oil content/thickness) have higher 
reflectance, hence, resolved as relatively steep slopes (i.e., -
0.70 to -0.30) while the areas with low oil abundance 
produced low values to the gentle slope (i.e., -0.10 to -0.02) 
between 1.73μm and 2.30μm. In the case of clean water 
pixel, very low or no slope indication is expected (i.e., -0.02 
to -0.00) as reflectance at the two spectral channels used is 
similar due to water’s strong absorption in the SWIR. 

(1) 

Where a = Reflectance at 2.30µm; b = Reflectance at 1.73µm; c = 
Wavelength value of b (2.30µm); d = Wavelength value of a 
(1.73µm). 

The slope map for each flight line was created by 
applying the HYSS equation on the corrected reflectance 
images using band math. In figure 2, the slope maps are 
shown along with their true colour image composite for 
visual comparison. Flight lines 10, 11, and 14 captured the 
spill centre with substantial amounts of oil across different 
oil abundance classes. In contrast, flight line 12 covers areas 
with little or no oil slick as shown in this figure. These slope 

maps in figure 2 and their corresponding true colour images 
are shown at same spatial extent and the slope maps are 
scaled the same for comparison purposes. Five distinct oil 
abundance classes were established with unsupervised 
classification and they are subjectively denoted with 
different colours as very high, high, moderate, low, and low 
very oil abundance classes (see figure 2’s legend). The 
ocean water is depicted in white as the background 
substrate on displayed on slope map as shown in figure 2 
and figure 4 (section 2.4).  

 

 

 

Fig 2: Slope map of Deep-Water Horizon spill across flight lines 10, 
11, 12, and 14 (along with true colour image at same spatial 

extent), depicting distribution of varying classes of oil abundance 
with colour schemes against ocean water (white). In agreement 
with figure 1, Flight lines 10, 11, and 14 contain substantial oil 

slicks whereas flight line 12, which is far from spill core, does not.  
Loss of textural information at the top and bottom left of the 

image 12 and 14 is due to poor mosaic of the raw images. 

 

Fig 3. Flow chart showing the procedure for validation of slope map 
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Table 1: Comparison of class boundary and percentage coverage of different oil abundance on classified slope map on intersection 
images from flight line 14 with flight lines 10, 11, and 12. 

  

Class Name 
Range and percentage of Slope Value Across Class Boundaries/Oil Abundant Classes 

Cloud/Shadow Very High High Moderate  Low Very Low water 
Flight line/ 
acquisition time 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

Slope 
Range 

% scene 
coverag
e 

10 
19:54:57- 
20:27:31 

-2.2  
 
  to 
 
 -0.70 

0.05 -0.70  
 
to 
 
 -0.60 

0.04 -0.60 
 
to 
 
 -0.30 

0.67 -0.30 
 
 to 
 
 -0.10 

5.12 -0.10 
 
 to 
 
 -0.05 

9.33 -0.05 
 
 to  
 
-0.02 

20.64 -0.02  
 
to 
 
 0.23 

64.13 

14 
22:11:56 – 
22:45:32 

0.02 0.01 0.10 0.56 2.87 11.21 89.21 

11 
20:32:39 – 
20:57:46 

-4.86 
 
 
 to  
 
-0.7 

0.10 -0.70 
 
to 
 
 -0.60 

0.03 -0.60 
 
to  
 
-0.30 

0.35 -0.30 
 
 to  
 
-0.10 

3.24 -0.10 
 
 To 
 
 -0.05 

8.44 -0.05 
 
 to 
 
 -0.02 

20.52 -0.02  
 
to 
 
 0.29 

67.25 

14 
22:11:56 – 
22:45:32 

0.23 0.08 0.73 4.24 12.93 19.58 62.11 

12 
21:01:43 – 
21:36:37 

-2.75  
 
to  
-0.70 

0.00 -0.70 
 
 to  
-0.60 

0.00 -0.60 
 
 to  
-0.30 

0.00 -0.30 
 
 to 
 -0.10 

0.00 -0.10 
 
to 
 -0.05 

0.05 -0.05  
 
to 
 -0.02 

6.37 -0.02  
 
to  
0.26 

93.58 

14 
22:11:56 – 
22:45:32 

0.00 0.00 0.00 0.00 0.04 8.33 91.62 

2.4 Validation of AVIRIS Slope Map  

The flow chart in figure 3 shows the procedure adopted 
for validation of the slope map. Validation of the results of 
the HYSS index is important in order to measure the 
accuracy of oil slick quantification achieved on the slope 
map across the AVIRIS flight lines. The image of DWH spill 
in Figure 1 shows the flight lines of AVIRIS data, numbered 
in sequence of acquisition. Seven flight lines (8-14) cover 
the spill as shown in the said figure. However, three flight 
lines (10, 11, 14) covers the core of the spill and are 
therefore used in the validation analysis. Flight line 12 is 
also included in the validation analysis as this flight line 
slightly covered only oil sheen and largely the ocean water.  
The time lag between successive flight line is roughly about 
30 minutes. In other words, the cross-cutting flight line 14 
has an acquisition time successively closer to flight line 12, 
11, and 10. 

 

 

Figure 4: Slope map at intersection of flight-line 14 and other 
crosscutting flight lines (10, 11, and 12) showing variation of 

percentage coverage of oil abundance classes at the three 
intersections (a). Below intersection images is the bar chart, 

showing percentage coverage different relative oil abundance 
classes (b) 

First column of Table 1 above shows the time lag 
between each flight line. In an attempt to validate the 
capability of the HYSS for discriminating oil abundance 
classes from the background ocean water, we computed 
HYSS in order to determine oil occurrence/coverage at each 

intersection of flight line 14 and the other flight lines (figure 
4a).  Tabular results are in table 1 and depicted as a bar 
chart in figure 4b.  However, with a dynamic ocean current 
and ongoing impacts from chemical dispersant, significant 
change is expected at each intersection due to time-lag of 
approximately 70 (lines 12 and 14) to 140 (lines 10 and 14) 
minutes (Svejkovsky et al. 2016, Sun et al. 2016). With these 
two drawbacks, class to class comparison of oil abundance 
on before (flight line 10, 11, and 12) and after image (flight 
line 14) is not possible. In the three intersections shown in 
figure 4, the before and after images for flight lines 11 and 
14, respectively, reveal similar oil slick ocean coverage. We 
used correlation of each pixel in the before image to each 
pixel in the after image to assess the degree of variance at 
this intersection. However, image correlation reveals a very 
low correlation coefficient of 0.16, suggesting substantial 
redistribution of the oil slick within the time lag of 
acquisition of both images, which we discuss further in 
sections 2.5 and 2.6 below. This is not surprising because 
image correlation does not depict the coexistence of 
quantity of oil coverage averaged across the whole image, 
but rather, compares the oil abundance classes at the same 
pixel-pixel locations on both images, which is expected to be 
strongly influenced by ocean current dynamism and the 
effect of dispersant over the time lag.  While the HYSS slope 
map was intended to assess accuracy of mapping oil 
abundance classes, the substantial change between flight 
lines limited the utility to oil slick-sea water discrimination 
(section 2.5). To achieve this comparison, a subset of flight 
line 14 and the corresponding preceding flight lines at each 
intersection were extracted and classified, as shown in 
figure 5. These classified images were further pre-
processed for change detection statistics as discussed in 
section 2.5.  

HYSS index measures relative oil abundance, therefore, 
the class boundaries are subjective due to the effect of 
internal and external factors relating to the image scene. 
Possible internal factors are pixel mixing, sensor/platform 
noise, and calibration while the external factors may 
include scene illumination, viewing geometry, and sun glint 
(Clark et al, 2010).  A slight variation observed in the range 
of slope values to their corresponding oil abundance classes 
across all flight line (as shown in table 1) is attributable to 
these factors and the occurrence of natural and artificial 
objects in the scene such as ships, clouds, and shadow. 
Variation of slope value is only visible on the upper and the 
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lower bound in first and last class boundary as shown in 
table 1. That is, cloud and shadow have class boundaries 
with a varying slope values (i.e., -2.2 to -0.7 for flight line 10, 
-4.86 to -0.7 for flight line 11 and -2.75 to -0.7 for flight line 
12). Similarly, varying lower class boundary occurred for 
the three flight lines (i.e., -0.02 to 0.23 for flight line 10, -
0.02 to 0.29 for flight line 11 and -0.02 – 0.26 for flight line 
12). The variation of slope value is highest on flight line 11 
image because of the presence of spill combating ship 
within this mage scene. 

To validation slope map via change detection of oil slick 
coverage comparison on intersection images (i.e., oil slick-
seawater discrimination), we used change detection 
statistics. This comprises of evaluation and comparison of 
quantity of oil and non-oil pixel on corresponding subsets 
at each intersection. Image correlation did not work so well 
for the validation of slope map. Not only because of the 
expected mixing and redistribution of oil slick due to 
dynamism of ocean current and the use of dispersant within 
the time lag between the corresponding flight line, but 
correlation also checks for location accuracy for all oil 
abundance classes represented by varying slope values on 
both raster images of each intersection. Change detection 
statistics is therefore considered for a validation of oil 
presence and coverage at the three intersects. This option 
is more appropriate, since it provides percentage changes 
of oil and non-oil pixel at each intersect within the time lag 
of line 14 and other flight lines with agreement to visual 
changes resulting from redistribution of oil slick by ocean 
current and the effect of dispersant.  

2.5 Change detection on oil slick-and seawater 
discrimination 

The slope maps are raster images of the flight lines, with 
pixel values representing the HYSS value, as a measure of oil 
abundance classes as shown in figure 2 and figure 4. Five 
mainly oil classes were distinguished on AVIRIS flight lines 
as discussed in section 2.4 above. However, change 
detection  is intended to assess the accuracy of HYSS model 
in discriminating oil slick from seawater by comparing pixel 
values at same location on before (flight line 10, 11, 12) and 
after (flight line 14) of DWH spill images scene. To assess 
the changes between slope values, oil and non-oil pixels in 
these images, we used change detection statistics. As earlier 
discuss in section 2.4, two drawbacks do not allow distinct 
comparison of pixel-to-pixel slope value based on oil 
abundance classes. 1) Significant change in distribution of 
oil coverage and oil abundance classes due to dynamic 
ocean current and 2) the effect of the dispersant used to 
combat the spill as reported in previous works (Svejkovsky 
et al. 2016, Clark et al. 2010). These two drawbacks are 
expected to hindered pixel to pixel slope value comparison 
at each intersect for validation of oil abundance classes. For 
instance, pixel-to-pixel slope value comparison was carried 
out to check correlation of pixel-to-pixel slope value at 
intersection of 11 and 14 flight line, where least change was 
observed. The result is a very low value of 0.16 correlation 
coefficient. Unlike image correlation analysis, change 
detection statistics of before and after image of spill scenes 
is meant to assess changes of oil and non-oil pixel, at the 
three intersections for comparison.  Intersections used for 
validation procedure are 10/14 intersection (intersect 1: 
ITT1), 11/14 intersection (intersect 2: ITT2) and 12/14 
intersection (intersect 3: ITT3). These intersections were 
chosen based on the time lag of other flight lines relative to 
crosscutting flight line 14 and the presence of oil slick at 
each intersection, as depicted on figure1 and figure 4. The 
background MODIS image showed a relative abundance of 

oil on ocean (as grey shades) on the day of acquisition of the 
AVIRIS data (Clark et al. 2010). This image guided the 
selection of flight line covering the spill’s core at 
intersection with flight line 14. Corresponding subset of 
slope map of the same extent (derived from flight light 10, 
11, 12 and 14) are obtained at ITT1, ITT2 and ITT3. To 
prepare slope map of image scene at intersections for image 
correlation and change detection statistics, cloud, ships and 
shadow were digitized and masked out of the subset 
images, using true colour composite of each AVIRIS flight 
lines as guide. The exclusion by masking is intended to limit 
erroneous value on images, caused by these objects which 
may affect the result of change detection statistics. In 
general, cloud, ship and shadow give close but slightly 
higher slope value to oil. These values may be mistaken to 
oil, especially when affected by other internal/external 
factors (see section 2.4 above). Procedure adopted for 
image correlation and change detection statistics were 
discussed below. 

For the correlation analysis, the corresponding subset 
images at intersect were used to create a shapefiles to 
segregated oil pixel from ocean water pixel. These 
shapefiles were subsequently used to expunge the non-oil 
pixel (mainly water pixel) from the subset images. The 
subset images, containing only oil pixel slope value, are then 
layer stalked for correlation analyses. This analysis was 
carried out only for ITT2 as this intersect has high chance of 
success for correlation since substantial amount of oil was 
observed here and the time lag between these successive 
images is the shortest for scene with oil slick. The 
correlation coefficient obtained is low (0.16) as expected 
because, even though oil occurrence was obvious on both 
corresponding images. Oil abundance classes cannot stay 
the same over the time lag between the two images, not only 
for the dynamic nature of the ocean current but also due to 
the effect of dispersant that was reported to be in use within 
the timeframe of the image acquisition. For this reason, 
correlation analysis was not carried for ITT1 and ITT3 for 
the longer time lag and insignificant oil coverage 
respectively and cannot be used for validation of slope map.  

For change detection statistics, subset from flight line 
10, 11 and 12 were used as initial stage while subset from 
flight line 14 was used as final stage at the three chosen 
intersections as shown in figure 3. In this study, two 
classification method were used to obtain oil abundance 
classes of oil slick on slope map, i.e., density slicing and 
Isodata classification. Density slicing of the slope map was 
performed, virtually guided by the true colour composite of 
AVIRIS image of the spill. Both methods gave similar result 
with five oil abundance classes (figure 2 and 4). For change 
detection, we used unsupervised isodata classification since 
no training parameter is available to describe the spill.  That 
is, the classification is based on image statistics, using 
minimum distance techniques for pixel clustering (Richards 
and Richards 1999). The Isodata parameter for 
classification are chosen, to obtain optima classification, as 
depicted on the slope maps. Chosen Isodata parameters use 
are 13 maximum iteration, with 1% change threshold (Tou 
and Gonzalez 1974). To reduce the noise in the classified 
map, smoothing was applied using 3 x 3 pixels kernel size 
with aggregate minimum size of 30 pixels. These 
parameters are maintained for all subsets, to enable 
comparison between corresponding subsets and 
intersections for change detection statistics. The masked 
subsets images as described above (for correlation 
analysis) were reclassified as oil and non-oil (water) pixel, 
by merging all oil abundance classes as oil pixel. After 
classification, Kuan filtering was used to restore textural 
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loss in the image, which is inherent on flight line 14 as 
shown in figure 2 and 4. This filter replace the original pixel 
with calculated pixels based on local statistics (Zhenghao 
Shi and Ko B. Fung 1994). The filtering was basically used 
on subset image at these intersections, with textural loss 
(i.e., ITT1 and ITT3). The loss in textural information is 
thought to be as a result of the mosaic effect on this images 
or acquisition error. Illustrations of this occurrence is 
shown at top right and bottom right of the slope map of 
flight line 12 and 14, 10 and 14 (respectively) in figure 2. 
Before the application of the filter on flight line 14 at ITT1 

and ITT3, this image subsets were segmented into sub-
image with coherent textural pattern. Each image segment 
were separately filtered before they are merged for 
classification, in order to enhance the filtering process. 
Filtering procedure and subsequent reclassification of 
subset images by merging all oil abundance class as oil pixel 
and water pixel as non-oil pixel produced oil coverage map 
for the three intersection images.  Figure 5 shows oil 
coverage on subset images at the three intersection while 
Table 2 shows the result of the change detection statistics 
for each intersection. 

Table 2: Change Detection Statistics for the Validated Intersections at Deep-water Horizon Spill based on Hydrocarbon Spectra Slope 
Index 

Intersection 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final state 
(Flight line 14 intersect 

image) 
 

Acquisition time:  
22:11:56 – 22:45:32 

 
 
  

Classification for Change 
Detection 
(Percentage %) 

Initial state 
(Flight line 10 intersect image) 

 
Acquisition timeframe: 

19:54:57 – 20:27:31 
 
 

 
 
 

ITT 1: 10/14 
 
 
 
 
 
 
 
 
 
 
 

ITT 2: 11/14 
 
 
 
 
 
 
 
 
 

 
ITT 3: 12/14 

 Oil  Water Total Row Class 
Total 

Unclassified 0.006 0.161 0.085 100 
Oil 15.477 14.028 99.982 100 
Water 84.517 85.811 99.919 100 
Class Total 100 100   
Class Changes 84.523 14.189   
Image Difference -70.198 68.742   

 Initial state 
(Flight line 11 intersect image) 

 
Acquisition timeframe: 20:32:39 – 20:57:46 

Unclassified 0.100 0.338 0.147 100 
Oil 55.539 52.646 97.798 100 
Water 44.051 46.792 98.574 100 
Cloud/Ship/Shadow 0.311 0.224 51.997 100 
Class Total 100 100   
Class Changes 44.461 53.208   
Image Difference -11.597 23.563   

 
                                         

 

Initial state 
(Flight line 12 intersect image) 

 
Acquisition timeframe: 21:01:43 – 21:36:37 

Unclassified ---- 0.078 0.080 100 
Oil ---- 0.236 100 100 
Water ---- 99.686 99.995 100 
Class Total ---- 100   
Class Changes ---- 0.314   
Image Difference ---- -0.309   

2.6 Result of Validation exercise  

The result of image correlation is obviously not useful 
for validation since the dispersion obviously would have 
resulted in redistribution of oil – water location as well as 
the location and quantities of oil abundance classes within 
the time lag of intersection images. This explained the low 
correlation coefficient of 0.16 obtained at ITT 2 intersection 
involving flight line 11 and 14 with shortest time lag of 
scene containing oil, as shown on table 1 and figure 4. The 
slope values generated by the HYSS index represents 
different oil abundance classes of which five main classes 
were resulted as shown on figure 2 and table 1. Oil slick 
dispersion due to the ocean current and the use of 
dispersant within the time-lag of the images does not favour 
image correlation as validation method, since this analysis 
checked for changes in pixel to pixel slope value and not 
only changes between oil abundance classes. Hence, the 
need for change detection statistic to compare oil quantity 
change on intersection images as a means of validating the 
slope map. To achieve this, all oil abundance classes were 
merge as oil pixel on the three intersection images. 

Therefore, these images have only oil and water pixels as 
input for change detection statistics. Subset intersection 
images of 10, 11 and 12 flight line were used as initial state, 
while subset intersection images of flight line 14 were used 
as final images as shown in figure 5 and table 2 below. 

The table 2 below shows the summary of the result of 
Change detection Statistics at the three intersections. 
Although, this analysis tool does not give location specific 
comparison of oil abundance classes as hoped attainable. 
However, it does provides the information of percentage 
changes that occurred between water and oil coverage on 
intersection images. This gives a relatively comparison of 
oil – water redistribution at each intersection within the 
recorded time-lag. Therefore, we can relate the result of the 
change detection statistics to the expected changes, while 
this analysis tool provides quantitative measure of these 
changes. At ITT 1, 84.5% of pixels that represented oil on 
flight line 10 has changes to water while only 14% of pixels 
that represented water on flight line 10 changed to oil on 
flight line 14 within the image time lag. This resulted in 70% 
overall change in oil – water coverage within this image 
time lag. Similarly at ITT 2, 55.5% of pixels that represented 
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oil on flight line 11 remained as oil while only 44% of pixels 
that represented oil on this flight line changed to water on 
flight line 14 within their respective time lag. Hence 11.5% 
overall change in oil-water coverage estimated. Also at ITT 
3 where oil sheen are reported in previous works (Clark et 

al. 2010, Svejkovsky et al. 2016), 0% of oil was represented 
on flight line 12 and only 0.24% was recorded on flight line 
14 within the image time lag, while little or no change is 
recorded in the percentage of oil-water coverage.  

 

Fig 5: Showing change detection map for ITT 1, ITT 2 and ITT 3, using the slope map generated by HYSS index. Image 11 and 14 
contained masked area of substantial cloud cover and spill combating ships (in black colour). 

3.0 Discussion of Results 

The slope map from HYSS has shown a good agreement 
with the results presented in previous work, both on 
discrimination and relative distribution of oil abundance 
classes based on oil – water ratio (Clark et al. 2010). 
Furthermore, though a relative measure, the oil abundance 
class discrimination revealed by this method is completely 
empirical and independent of site-specific reference 
spectra samples. Five distinct classes from (presumably) 
very thick oil to oil sheen were revealed as shown in figures 
2 and 4. In addition, this method is computationally fast, 
which saves time and therefore can be useful for rapid 
broad area search, in addition to monitoring and 
assessment of spill sites. The primary discriminative power 
of HYSS index is the use of most persistent absorption 
features in the SWIR, specifically at 1.73μm and 2.30μm 
(Kühn, Oppermann, and Hörig 2004b, Hörig et al. 2001, 
Andreoli et al. 2007, Clark et al. 2010). These overtones and 
combination band are associated with the C-H stretching of 
alkane compound, which represents the major constituent 
of most hydrocarbon oils (Clark et al. 2009). These two 
absorption features are resilient, appear with minimal oil 
quantities (<1 g/cm2), and their wavelengths position are 
relatively stable in all hydrocarbon oil and also in spectral 
mixture with several background materials (Cloutis 1989, 
Kühn, Oppermann, and Hörig 2004b, Hörig et al. 2001, 
Andreoli et al. 2007, Clark et al. 2009, Correa Pabón and 
Souza Filho 2016, Scafutto and Souza Filho 2016, Allen and 
Krekeler 2010, Allen and Satterwhite 2006). 

Some natural and artificial non-hydrocarbon materials 
are potential confusers. On the slope maps, vegetation, 
clouds, shadows, and ships respond to this ratio with slope 
values mimicking thick hydrocarbon oil (HYSS <-0.7) 
values. Therefore, occurrence of such objects and other 
similar objects in the scenes may affect the accuracy of 
hydrocarbon oil quantification. Scene content exploration 
for these non-oil objects is therefore important to minimize 
false positives. Furthermore, the effects of varying internal 
and external factors on HYSS values needs to be 
investigated. In this research, the observed range of slope 
values slightly varies within different flight lines. This 
variation may also be present within images in the same 
flight line, even if not significant. Careful observation of the 

true colour AVIRIS composite show marked variation in 
illumination due to varying sun angle and viewing geometry 
within flight lines. Therefore, further study on the possible 
effects of common internal and external image factors on 
slope values is merited. The validation exercise presented 
in the study left a knowledge gap due the limitation in the 
data used in this research. The time lag in the acquisition of 
each flight lines and the subsequent dispersion and 
redistribution of oil abundance classes by ocean currents 
and application of dispersant were limiting factors in this 
exercise.  

4.0 Conclusion  

The potential of HYSS index has been demonstrated for 
detection and quantification of hydrocarbon oils on ocean 
water, using hyperspectral data. This method uses a simple 
ratio technique involving two persistent absorption 
features which are also common to hydrocarbon oils, even 
in mixed spectra. The results show a good agreement on oil 
abundance classes and distribution pattern in the same 
dataset from previous studies. However, unlike previous 
works, this new method quantifies oil slicks using one 
dataset, completely empirical and independent of site-
specific reference spectra. It is also computationally fast, 
which saves time and therefore can be useful for rapid 
broad area search. Further work is however needed to 
investigate internal and external image factors that may 
affect the HYSS values of hydrocarbon oil, such as 
illumination geometry, viewing geometry, sun angle, sun 
glints, signal to noise ratio, and the effect of the oils’ 
bidirectional reflectance distribution functions (BRDF).   
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