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vibrations, and simulation. tests are often performed on a smaller-scale replica of the system,

referred to as the model, which is more convenient, cost-effective,
and time-effective. This study, therefore, describes the
establishment of similar conditions among structural systems, with
the main objective of studying the similitude theory’s applicability
in establishing the necessary similar conditions for designing scaled-
down models to predict the drillstring’s vibration behavior. The
scaling laws for all the relevant parameters regarding the scaled
drillstring model, as well as the full-size drillstring system, were
derived from the respective equations of motion. The scaling factors
for all relevant parameters are determined using the theory of
dimensional analysis. In addition, the geometry distorted similitude
theory is revisited and employed to overcome the physical limitation
and develop the necessary similar conditions for dynamic testing of
the scaled drillstring. Meanwhile, the similitude relationship
between the prototype and the model was validated with a case
study using lumped segments bond graph modeling and simulation
software.

INTRODUCTION

The drilling industry is often faced several challenges, including severe drillstring vibrations which tend to
minimize the life of the pipe by accelerating the process of fatigue. Furthermore, excessive vibrations have
the capacity to cause pipe failure, wash-outs, and reduced penetration rate. For instance, in 2003, a
company conducting drilling operations in Longhupao of Daqing, reported 7 malfunctions in the
drillstring between the depths of 2,390 and 3,042 m, majorly due to excessive vibrations (Li et al., 2004).
The high repair costs incurred led to the discontinuation of drilling activities in some areas of the well.
Also, the repair operations required significant manpower, as well as material resources, and consequently
reduced the drilling speed. These malfunction cases occur in the industry every year, therefore, the complex
vibrational mechanisms of drilling systems must be completely understood to achieve improved
performance and control of the functional operation.

Studies on the control of excessive drillstring vibrations were first carried out several decades ago (Finnie
& Bailey, 1960). Initially, these challenges were solved by developing dynamic models of the drillstring
system, ranging from low order models based on lumped spring-mass approach (Eronini et al., 1982;
Halsey et al., 1986), to high order elastodynamics and finite-element multibody models (Khulief et al.,
2007, Khulief & Al-Naser, 2005; Tucker & Wang, 1999; A.S. Yigit & Christoforou, 1996). However,
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these dynamic models were highly complex and numerous assumptions were made to simplify the models.
Therefore, experimental studies of the drillstring dynamics are essential to complement the theoretical
studies and reduce the model’s complexity. Currently, only very few researchers have attempted to
construct a laboratory-scale test rig to properly study the drillstring vibrational behavior.

Aarrestad & Kyllingstad (1988) and Aarrestad & Kyllingstad (1986) built a full-scale 1000 m vertical
research drillstring and used a vertical drillstring, as well as a hard-wire measurement-while-drilling
(MWD) tool. Subsequently, a theory for the torsional vibrational response on the longitudinal response
for longitudinal excitation was presented. High data rate measurements of near the bit accelerations,
weight on bit, and torque have been used to verify the theoretical predictions in drilling situations.
Meanwhile, Antunes et al (1992) constructed an experimental drillstring model of a sample shaft and shell
system with confined liquid. In this construction, a 1.5 m long, 0.75 m external radius, and 4 mm thick
steel shaft was assembled vertically, with water as the drilling fluid, while the clearance between the central
shaft and the rigid outer shaft was 11 mm. Also, an electric motor with a speed control of up to 700 rpm
was been used to drive the shaft, while a 200 N shaker was used laterally to excite the mobile fixture, with
a force excitation frequency of 0 to 25 Hz.

In addition, Berlioz et al (1996) constructed a laboratory test rig to study the basic phenomena of lateral
drillstring vibrations, using a 2 m long and 2 to 7 mm diameter steel string, as well as a 6 to 10 mm inner
diameter plexiglass in the laboratory drilling set-up. Meanwhile, Khulief & Al-Sulaiman (2009)
constructed a laboratory-scale drillstring to study the combined vibrations mechanisms occurring within
the drillstring’s dynamic behavior, including bending, torsional, and self-excited stick-slip oscillations. A
shaft of 1 to 2 m length and 0.3 to 1.0 cm diameter was used in this setup.

Loeken et al (2018) presented a laboratory-scale drilling rig to imitate the main functionality of a normal
offshore drilling rig, using an aluminum drill pipe of 914.4 mm length, an outer diameter of 9.525 mm,
and a wall thickness of 0.889 mm, installed during normal drilling operations with the rig. Recently,
Khadisov et al (2020) designed a rig with fully functional and conducted successful experiments aimed at
testing the drilling optimizations and failures. The rig has a complete hoisting system comprising actuators,
stepper motors, and brakes, as well as a simple circulation system comprising two pumps with maximum
flow rates and working pressures of 19 L/min and 3.1 bar, respectively. A 6061T6 aluminum alloy pipe
with length, outer diameter, and wall thickness of 921.6 mm, 9.525 mm, and 1.245 mm, respectively, was
used in this setup.

Based on the literature review, only a few laboratory-scale drillstring set-ups have been constructed for
research on drillstring vibration, and these studies do not even consider the scaling analysis theory. The
scaling laws provide the relationships between a full-scale structure (prototype) and the small-scale
counterpart (model). Using the scaling laws, the prediction of the responses for the prototype is achieved
by conveniently performing the dynamic testing on an in-expensive model which provides the benefits of
convenience, cost-effectiveness, and time effectiveness. In cases where similar models are used, the
relationship between the model and prototype must also be known. However, establishing this relationship
and fulfilling the numerous similarity requirements between the two systems are often difficult to achieve.
Therefore, this study focuses on deriving the scaling laws for the dynamic analysis of drillstring, including
the difficulties faced in fulfilling the model design conditions between the two systems. Subsequently, the
scaling laws are to be validated through a numerical modeling analysis.

This article comprises 9 sections, with sections 1 and 2 providing an introduction, as well as a description
of modeling based on the conditions of the similarity, respectively. Furthermore, Section 2 presents a
derivation of the scaling laws for the case of the drillstring dynamics, while section 4 describes the modes
of the drillstring vibrations. Section 5 presents the scaling factors between the prototype and the scaled
model to achieve the geometrical similarity and section 6 discusses the issues related to the geometrically
similar scaled model construction. Meanwhile, Section 7 revisits the geometrically distorted scaling
technique to derive a new set of scaling laws for achieving a laboratory-scaled drillstring model. Finally,
section 8 presents a validation of the new scaling laws while Section 9 provides a conclusion for this study.

METHODS
Modeling based on the conditions of similarity method

A physical system refers to an assembly of engineering and/or parts of the natural physical world that
respond individually or collectively to physical inputs by conversion into physical outputs. The behavior
of the system is often investigated by experimental techniques, where the system is subjected to planned
test conditions and the response is observed or measured. However, for larger or more complex systems,
these investigations are preferably carried out on a smaller-scale replica, which provides the benefits of
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convenience, cost-effectiveness and time effectiveness. Experimental modeling is based on a mandatory
condition stating the model and prototype system must obey the same physical laws. Therefore, the model
must be constructed to embody the entire prototype’s relevant features, as well as parts. This unique
relationship between the two systems is broadly referred to as similarity, and is managed through
modeling, an experimental technique essentially applied based on dimensional considerations. The
condition of similarity between the systems is often established by a procedure called Dimensional
Analysis. Therefore, modeling uses certain dimensional properties of the variables in the problem which
are arranged in non-dimensional groupings (David, F W & Nolle, 1982).

Non-dimensional formulation based on Buckingham’s theorem

Usually, several variables, xi1, x2, x3,.., X, are required to describe the physical phenomenon of any problem
of interest. Combining the variables of the form xiP!, x;P, x37,....., x,"" forms several non-dimensional
quantities where exponents pi, p2, P3,...., P are selected to obtain a non-dimensional resultant. Assuming
one of the variables x; has the basic dimension x; = L3 T" M€, the product is expressed as (L*' TP! M¢!)p!
(L22 T2 Me2)p2 (L3 T3 MS3)p3 ... , (L TP M), The exponents of the various basic dimensions must
combine to give zero value for each basic dimension, to obtain a non-dimensional product (Jha et al.,
2006, 2005). Therefore, the equation below must be satisfied for this condition to be met.

for L: aip1 + azpz2 + asps +.....+ anpn = 0
for T:  bip1+ bzpz+ b3ps +..... + bapn =10 (1)
for M:  cip1+ czp2+ c3p3+.ee. + Copn =0

These are three homogeneous equations with n unknowns pi, pz, p3...., pn. Generally, the solutions of
these equations depend on the equations’ independence as well as the value of n, where n is equal to the
number of original variables in the problem. In cases where r represents the rank of the matrix of
coefficients, then from the theory of equations, there is k-r linearly independent solutions to Equation (1)
and the number of possible independent dimensionless products is k-r. According to the Buckingham Pi
Theorem, in cases where an equation involving n variables is dimensionally homogeneous,

x1 = f(X2, X3,...... Xn ) (2)

Equation (2) can be reduced to a relationship among n-r independent dimensionless products, as shown
in Equation (3).

M = f(T[Z, T3, 00 en Tlh-r ) (3)
Types of similarity relations

Basically, two types of similarity relations are used. The first type, where well-defined conditions are
strictly imposed on the model design, provides the “complete similar model”. Meanwhile, the second
relation is derived from the first by the relaxation of certain conditions in the model design, resulting in
the “distorted model”.

Complete Similarity

Complete similarity exists between two systems in cases where the values of all corresponding ni-factors
for the prototype are equal (Equation (4)). However, complete similarity does not necessarily require
geometric similarity. Therefore, two systems can appear different in shape and size, but still, be completely
similar in cases where the following condition is fulfilled (David, F W & Nolle, 1982)

(T[i)Prototype = (T[i)Model (4)
Wherei=1,2,3,......... n-r.
The Principle of Distortion

In modeling practice, there are often situations where the conditions of complete similarity are impossible
to achieve, and consequently, a different modeling approach is required. In dynamic analysis, fulfilling all
the design conditions with only one length scale factor which is not unity, is commonly impractical. This
is often due to inadequate materials, unavailability of specific member dimensions (cases of enormous
length and minuscule diameter or cases where one member has enormous length and another has minute
length). In these cases, two or more different length scales must be selected, and these types of models are
referred to as distorted models (David, F W & Nolle, 1982)
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The Scaling Factor A

To achieve meaningful modeling, the rations of respective variables in similar systems must be constant.
For a prototype-model relationship, this condition expresses linearity between respective variables and is
defined by a non-dimensional constant of proportionality referred to as the scaling factor, A (Equation

(5))

1 __ magnitude of variable x;in prototype
Xi

(5)

magnitude of variable x;in model

[I-factors contain only powers of variables, therefore, the notion of scaling factors also applies to the ratios
of respective m-factors, as shown in Equation (6)).

magnitude of m;in prototype

A, =

(6)

magnitude of m;in model
Derivation of the scaling laws

The drillstring dynamics are often analyzed through mass-spring-damper models. A drillstring, constrained
between the rotary table and the well bottom, is commonly divided into segments, which represent mass
elements of a beam. The responses of these segments to the external excitation, whether constant or
periodical, are described by a second-order ordinary differential equation (ODE), known as the equation
of motion. Khulief & Al-Naser (2005) derived the equation of motion for a rotating drillstring using the
Lagrangian approach, as well as the finite-element method, while Chunjie & Tie (2009) discussed the
drillstring vibration’s basic equation. Therefore, the equation of motion for the drillstring is given below
(Equation (7)).

[M][€] + [Cl[e] + [K][e] = {F()} (7)

Where {e}, {¢} and {€} denote the displacement, velocity, and acceleration vectors, respectively, while [M],
[C], and [K] represent the overall mass, damping, and stiffness matrices, respectively, and {F(t)} is the
external force vector of the entire drill-string system. Using the conventional modal analysis Wu (2007) &
Wu et al (2002), Equation (8) is obtained.

.. . 2 _
myfj; + 2my§in; + mywin; = f;(t) (8)
Where, m;; and §; denotes the generalized mass and damping ratio for translation d.o.f motions, as well
as the mass moment of inertia and damping ratio for rotational d.o.f. motions respectively. 7j; , 7; and n;
signify the acceleration, velocity, and displacement for translation d.o.f motions and angular acceleration,
angular velocity, and angular displacement for rotational d.o.f motions respectively. Meanwhile, f;(t)

represents the generalized force for translation d.o.f motions and torque for rotational d.o.f motions
respectively, with each quantity corresponding to the ith mode shape {¢;} and i th natural frequency, w;.

Scalable Parameters

Assuming all the symbols in Equation (8) represent the scalable physical parameters between the scale
model and the full-size drillstring system (Wu et al., 2002; Wu, 2007), the parameters for dynamic analysis
can be tabulated as shown below.

Table 1. The dimensions of measured quantities for dynamic analysis

Symbol Measu}- ed Dimension

Quantity
Characteristic L

n length

3 Damping ratio 1
Natural ’

w T
frequency

m Mass M

¢ (;haracterlstlc T
time

f Force MLT?
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Determining n-Terms

Using the method above based on Buckingham’s pi theorem, the equation below is obtained.
nP1 S(172 wP3 mP+ tPs fpe = MO00 TO (9)
Substituting the basic dimension for each variable in Equation (9), we obtained Equation (10) with further
explanation for length, mass, and time shown in Eq. (11),(12), and (13).
LP11172(T—I)DstTDs(MLT—Z)Ps = M910T0 (
for L: pt+ps=0 (11
for M:  ps+ ps =0 (12
for T:  -p3+ps-2ps =0 (13

Therefore, the dimensional matrix is:

t ® 3 m n f
M 1 0 1
L 1 1
T -1 0 0 -2

Considering the determinant formed by the last three columns of the dimensional matrix,

1 0 1
01 1|=-2
0 0 -2

The rank of the dimensional matrix is 3 because this determinant is non-zero. Based on Buckingham’s pi
theorem there are 6-3 = 3 dimensionless products required to describe the problem. Choosing three
parameters, pa, p+ and pgare expressed in terms of p2, p1, and ps as shown in Equation (14).

()" g2 wips =MoL 70 (14)

Finally, the n-terms are expressed as shown in Equation (15).

_nmm

=i m=¢ T3 = wt (15)

1

Determining Scaling laws

The modeling or scaling laws are developed by applying similarity conditions on the pi numbers above.
To determine the similarity between the prototype and model, both systems are assumed to be described
by the Equation (16) and Equation (17).

Prototype:  Fp(mip, mip, m1p) = 0 (16)
Model: Fn(T1m, Tim, Tim) = 0 (17)
Applying similarity conditions, the following statements are obtained

Mip = Mim,  M2p = Mzm and 73p = M3m (18)

Subsequently, the scale factors are extracted from Equation (18) as shown below.
- my _ (mm
I. Tip = MTim = (tzf)p = (tzf)m
= Aydm = A Af

11. T2p = M2m = ép = fm

111 T3p = T3m = wtp = (Utm
= la)lt = 1
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M = AP2py Ag =1, QA =1 (19)

Where 4, A, Ag Af, A and A, represent the scaling factors for the generalized modal displacement,
the mass, the damping ratio, the force, the time, and natural frequency.

Equation (19) indicates the requirement for the similitude between the full-size drillstring system, as well
as the scale model, and is referred to as the scaling law in this article.

Modes of drillstring vibrations

Drillstring vibrations are divided into three modes: axial, torsional, and lateral (Figure 1). These three
vibrations are coupled to an extent and may occur during rotary drilling. The natural frequency scaling
factor of each mode is the main scaling factor for the modeling of drillstring vibrations, and depends on
the drillstring’s materials and geometry. For the axial and torsional modes, the natural frequency scaling
factor depends on the drillstring’s length and material property. Meanwhile, the lateral modes counterpart
depends on the drillstring material property, length, and diameter.

Using the equation of natural frequency for three different modes from Rao (2011), the natural frequency
scaling factors are shown in Eq. (20) to Eq. (22) .

Transverse modes

A AE;

Ay = . > A, = PR (20)
Axial modes
2 2
Ao = ﬁ >, = Apiz (21)
Torsional modes
A _ |4cM
Ay = e >, = ot (22)

Where, A, Ag, A, Ay, Aa, A and A, are scaling factors for the stiffness, modulus of elasticity, area
moment of inertia, density, modulus of rigidity, and mass moment of inertia.

Bit hounce Stick/slip Bending

Axial Torsional Lateral

Figure 1. The different modes of drillstring vibrations (adopted from Jardine et al. (1994)).
Scaling factors between the full-size drillstring system and scale model

Using geometry similarity, meaning the same length scale factor for both length and diameter of the
drillstring system, the following Equation (23) is obtained.

A== 1 (23)

And for similar materials, Equation (24):
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Ag=2=2,=1 (24)
Tables 2 to 4 show all scale factors for the three modes of drillstring vibrations.

Table 2. List of all scale factors for Lateral modes

Description of scale
factor

e | ' )

4 = 2 4
Natural Frequency, Ao Apdady A"y =
n

Area moment of

Calculation Result

4 4
inertia, A Aa A
Time, A % Ay
Mass, Ap Aodady = 1y° 2y Ay’
Displacement, A, Ay Ay
Force, A¢ Using eq” (19) /1,72
Stiffness, Ay A A2 Ay
Damping Const., A, Ae Am A /1,,2
: 2o X
Rotating Speed, Ao 7 o

The three modes of drillstring vibrations are coupled to an extent. In addition, bit whirl is commonly
triggered by the high bit speeds during stick-slip motion, which tends to generate lateral vibration of the
BHA as the bit accelerates during the slip phase. Enormous lateral vibration of the BHA into the wellbore
often causes bit-bounce due to axial shortening, and Induced axial vibrations at the bit can lead to lateral
vibrations in the BHA. Also, the axial and torsional vibrations observed at the rig floor are sometimes
related to severe lateral vibrations downhole near the bit. The axial force scale factor, 45 , depends on the

lateral natural frequency scale factor for the drillstring system, and is derived using the equation below.

Equation of transverse natural frequency for drillstring system (Rao, 2011).

o=@ {E (- @)
~at= E[E)(w - D)

EI\ 5 o/ f
pAL‘f) nn (pALZ)

For model drill-string:

= w,? = n4n4(

Wnp? = M) 2 (o) (25)

For full-scale drill-string:

2 _ oa_ar Efly N 2 2 fm
ng? = WL — (L 126)

Dividing Eq. (26) by Eq. (23), Eq. (27) is formed.
A(Z‘) = AEAI/APAAA% = lf/lp)'A)'%
= (AEA,)/APAA/I% A2 = Af/ApAAA% A2 =1
= A/ A4A2 23 = lf//lA/lf A2 =1
1
ho=5, A=A (27)

n
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Table 3. List of all scale factors for Axial modes

Description of

Calculation Result
scale factor
Ag 1 1

Natural YR P o
Frequency, Aw 1

. 1
Time, A, Z Ay
Mass, Ay, Modady = Wy Ay°
Displacement, A, Ay Ay
Force, A Amig= 2°. 1 Ay
Stiffness, A A Aoy Ay
)l?amplng Const., e A A Anz

C
Rotating Speed, Ao 1
Ao A Ay

Table 4. List of all scale factors for Torsional modes

Description of
scale factor

Calculation

Result

Natural
Frequency, An

Time, A,

Mass moment of
inertia, Ay,

Area moment of
inertia, A

Angular
displacement, Aq

Torque, Ay
Stiffness, Ay

Damping Const.,
A

Rotating Speed,
Ao

Ahl At
VTN TR PV L

Using eq" (19)

Yo Ao

’15’1]0 Aw
lg
At

N|,_.

Difficulties to construct a drillstring scale model

The scale factors above have been used to construct a 5-m length drill pipe scaled model. For the case of
the 1200 m length actual drill pipe is shown by Eq. (28).

l 1200
M= Ay = L= == =240
lmodel 5

(28)
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Table 5. The physical parameters of the full scale (prototype) and model drillstring
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Parameters Prototype Model
Drill pipe length, I, 1200 m Sm

Drill pipe O.D., d, 127 mm 0.53 mm
Drill pipe 1.D., d; 108.6 mm 0.4525 mm
Drill collar length, I~ 200 m 0.83 m
Drill collar O.D., d, 203.2 mm 0.847 mm
Drill collar I.D., d; 76.2 mm 0.3175 mm
e hole diameter, 317 5 im 1.323 mm
Brlllstrmg Rotation, 150 rpm 36000 rpm

Table 5 summarizes the conversions between the prototype and the model parameters. In cases where the
laboratory permits a longer drillstring, the model’s necessary parameters are recalculated using the derived
scale factors. A major limitation of the derived scaling factors for the case of geometric similarity condition
is the model thickness which is often too thin to be built in the lab. Adequate drill pipe thickness is obtained
by increasing the scaling factor, however, this produces a longer drillstring model, but every laboratory
has a limitation in length to manage space for the construction of a drillstring model. The scaled
parameters for the model provide a very high-speed rotation at the top, but this limitation is overcome by
the selection of the devices and designing a safer high rotational experimental lab setup. In the next section,
a geometrical distorted model is discussed to achieve the experimentally designable drillstring model
thickness.

Geometrical distorted scale model technique

This technique is based on generating geometrical distortions on scale models and, optionally, also in
boundary conditions for compensating certain changes in physical laws across these distortions. The
technique has no geometrical restrictions and allows the model’s geometrical characteristics to be altered,
thus obtaining a distorted scale model. In this section, the geometrically distorted model is derived for
achieving the required scale model thickness. First, the geometry similarity is applied, then a modified scale
factor Cp is used to obtain the drillstring’s diameter (Equation (31)). Tables 6 and 7 show a summary of
the scale factors derived for the three different modes of vibrations.

A= Ay, Ag= Ay*Cp (31)
And for similar material by Equation (32),
Ap=Ag=2,=1 (32)

Table 6. The scale factors for transverse and axial modes

Description of scale Transverse

factor modes Axial modes
Cp L

Natural Frequency, Ao ™ M

. A

Time, A, C—; Ay

Mass, A, ?\,]3 * Cp? ?\,]3 * Cp?

Displacement, A, 2—; Ay

Force, A; 7\“2 * Cp? 7\“3 * Cp>

Stiffness, Ay Ay * Cp? Ay * Cp?
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Damping Const., A, M

c
Rotating Speed, Aq ~

A2 C

)\nz * Cp?

__l>)

The scaling factor of axial forces (f) for lateral vibration is shown by Eq. (33).

Table 7. List of all the scale factors for torsional modes

Description of scale factor

Results

Natural Frequency, Aw
Time, A

Mass moment of inertia, 4;,
Area moment of inertia, A;
Angular displacement, Aq
Torque, Ag

Stiffness, A,

Damping Const., A,

Rotating Speed, Aq

Table 8. The physical parameters of the full scale (prototype) and model drillstring for the modified scaling factor
Cp=0.1& 4, = 1, = 240.

Parameters Prototype Model
Drill pipe length, 1, 1200 m Sm

Drill pipe O.D., d, 127 mm 5.3 mm
Drill pipe I.D., d; 108.6 mm 4.525 mm
Drill collar length, I 200 m 0.83 m
Drill collar O.D., d, 203.2 mm 8.47 mm
Drill collar 1.D., d; 76.2 mm 3.175 mm
Bore hole diameter, dn  317.5 mm 13.23 mm
Hook load, Fh 550000 N 3.9785 N
Drillstring Rotation, Q@ 150 rpm 36000 rpm

A sufficient thickness of the scaled drillstring was obtained using the modified scaling factor Cp. However,
this provides a different scaling factor of the lateral natural frequency, compared to the axial and torsional
counterparts. Therefore, the modified scaling factor method is applicable for axial and torsional modes of
drillstring dynamics but not for the lateral mode. In the actual application, a set of stabilizers are used in
the downhole to minimize the lateral vibrations, therefore, the modified scaling factor is an effective way
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to construct a laboratory scaled drillstring set up to analyze the coupled axial and torsional vibrations.
The next section presents a validation of the scaling laws for geometrically distorted scale models of a
vertical drillstring.

Validation of the scaling laws for geometrically distorted scale models of a vertical drillstring

Figure 2 shows the schematics of the drillstring considered for validating the scaling laws using numerical
analysis. The dynamic models used in the numerical analysis employed an energy-based method, Bond
Graph Theory, which is a unified dynamic system representation language where the connections between
multi-disciplinary elements are seamlessly and explicitly represented by power flows. In the vector form,
concise descriptions of complex systems are provided. Appendix a presents an overview of the bond graph
approach. A lumped-segment approach is used to model the drillstring axial and torsional dynamics. In
this approach, the system is divided into a series of inertias, interconnected with compliances (Wu, 2007).
The model’s accuracy depends on the number of elements considered; however, in contrast to a modal
expansion approach, there is no need to determine the analytical model shapes and natural frequencies.
Furthermore, more accurate results are obtained in cases where a system model is divided into a larger
number of elements. The behavior approaches a continuous system as the number of segments approaches
infinity.

A total of 13 segments were used in the axial and torsional dynamic models to capture the first eight axial
natural frequencies of the whole drillstring, with 10 segments used for the long drill pipe and three
segments for the relatively short drill collar. Figure 3 shows the lumped segments bond graph models for
the axial and torsional motions of a drillstring. The axial segment bond graph model shows a mass
(element I) and gravity force source (element Se) associated with the segment velocity, v. Furthermore, the
segment’s axial compliance and material damping are modeled by parallel compliance (C) and dissipative
elements, the forces of which are functions of the segment’s relative velocity (calculated by the O-junction)
concerning the adjoining segment. In the case of vertical drilling, the buoyancy weight of the drillstring
segments acts in the longitudinal direction.

Rather than a computationally intensive and difficult-to-parameterize complete dynamic representation, a
quasi-static rock-bit model, which provides coupling between axial and torsional drillstring dynamics, was
used. The model equations are based on the bit-rock model in YIGIT & CHRISTOFOROU (2000); Ahmet
S. Yigit & Christoforou (2006), and are discussed in M. Sarker & Rideout (2012). Appendix B presents
the bond graph model of the rotary drillstring. Please refer to Karnopp et al., (2012) and M. M. Sarker,
(2012) for more details on the bond graph modeling method.

Hook load

Prototype: Model:

Drillpipe

Drillpipe length = 1200 m
Drillpipe OD = 127 mm
Drillpipe ID = 108.6 mm
Drillcollar length = 200 m
Drillcollar OD = 203.2 mm
Drillcollar ID = 76.2 mm
Bore hole Dia = 317.5 mm
Hook load = 550000 N

Bit rotation = 150 rpm

Drillpipe length =5 m
Drillpipe OD = 5.3 mm
Drillpipe ID = 4.525 mm
Drillcollar length = 0.83 m
Drillcollar OD = 8.47 mm
Drillcollar ID = 3.175 mm
Bore hole Dia = 13.23 mm
Hook load =3.9785 N

Bit rotation = 36000 rpm

Surface elevation amplitude = 0.002 m Surface elevation amplitude = 1.446e-8 m

Drillcollar
Bit Rock stiffness = 1.16e09 N/m
- Rock Rock damping = 1.5e05 Ns/m

(a) (b) (©)

Rock stiffness = 1.16e09 N/m
Rock damping = 1.5e05 Ns/m

Figure 2. The drillstring model validation (a) schematics, (b) prototype dimensions and (c) model dimensions
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Figure 3. The drillstring bond graph model (a) axial dynamics and (b) torsional dynamics.

RESULTS

The numerical simulations above are aimed at validating the scaling laws for axial and torsional dynamics.
Furthermore, the frequency domain toolbox in the 20Sim® is able to extract the axial and torsional natural
frequencies from the model outputs. Based on Table 9, the predictive natural frequencies from the scaled
model drillstring accurately match with the natural frequencies of the prototype drillstring. Therefore, the
geometrically distorted scaling method is a potential highly effective implication to capture the axial and
torsional dynamics of a prototype drillstring from the laboratory scaled drillstring model. The validation
also includes a comparison of the dynamic axial forces in the drillstring. The dynamic weight on bit plots
(Figure 4) shows the scaled drillstring model is able to accurately predict the frequency of the forced
vibrations of the prototype drillstring. However, the predictive amplitude of the axial force from the scaled
model is lower, compared to the measurement of the prototype. The plots of the axial forces in the
drillstring segments (Figures 5-8) show the scaled model is able to accurately predict the frequencies of the
prototype drillstring’s forced vibrations. In addition, the scaled model is also able to accurately predict the
amplitude of the axial forces at the top of the prototype drillstring. However, the differences are only
evident in cases where a comparison study is conducted close to the bit and the collar portions. The
modeling and simulation software used for this simulation allows for graphical modeling, similar to
drawing an engineering scheme. Furthermore, the software has the capacity to simulate and analyze the
behavior of multi-domain dynamic systems. The software platform enables the C-code to be generated
and this code on hardware for rapid prototyping and HIL-simulation. Therefore, this study’s results are a
potential effective tool for designing a laboratory-scale drilling set-up. The scaling laws generated can be
coded with the scaled drilling set-up to present the field drilling system results in real-time.

Table 9. Validation of the scaling factors of the natural frequency

No of Axial Natural Frequencies (rad/sec) Torsional Natural Frequencies (rad/sec)

Modes  Prototype Model prediction (using  Prototype Model prediction
measurements  scaling laws) measurements  (using scaling laws)

1 6.32 6.33 1.64 1.64

2 18.76 18.75 8.64 8.65

3 30.22 30.05 16.56 16.56

4 36.24 36.38 24,18 24,18

5 44.03 44.13 31.24 31.24

6 54.19 54.21 37.54 37.54

7 63.47 63.46 42.9 42.91

8 71.44 71.42 47.07 47.08
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Figure 4. The dynamic weight on bit (WOB) comparison plots.
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Figure 5. Comparison plots of the axial force at 100-m behind the bit (collar segment)
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Figure 6. Comparison plots of the axial force at a 960-m measuring depth (MD)
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Figure 7. Comparison plots of the Axial force at a 600-m measuring depth (MD)
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Figure 8. Comparison plots of the Axial force at a 240-m measuring depth (MD)

CONCLUSIONS
The similitude theory is a cost-effective and time-effective technique to establish similarity among structure

systems, and discover, as well as validate proper scaling laws. Therefore, this study shows the importance,
development, and applicability of the similitude relations of drillstring models made of the same materials,
as well as the use of this relationship in the design and analysis of the models. The consideration of the
geometrically distorted scaling technique provides useful scaling laws to design a laboratory scaled
drillstring. In addition, the scaling relations were validated using the numerical simulations based on the
lumped segments bond graph model technique, and the use of similitude relations to interpret the
prototype’s results using the developed model was presented. Based on the numerous analyses of the
responses in time and frequency domains, the complete similarity between the full-size structure and the
scaled model is easily achievable. Therefore, the method presented in the study is a potentially effective
tool for solving the problems related to the drillstring vibrations.
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Appendix A

An overview of the bond graph formalism

The bond graph is an explicit graphical tool for capturing the energetic structure of a physical system and is
uniquely suited to the understanding of physical system dynamics. This formulation is suitable for hydraulics,
mechatronics, thermodynamic and electric systems due to the ability to provide a concise description of complex
systems. Furthermore, the bond graph language expresses a general class of physical systems through power (effort
and flow) interactions, and the factors of power have different interpretations in different physical domains.

Figure A1 shows the generalized power (effort and flow) variables and energy (momentum and displacement)
variables in some physical domains. The generalized inertias and capacitance in the bond graph store energy as a
function of the system state variables. In addition, the sources provide inputs from the environment, while the
generalized resistors remove energy from the system. The state variables are generalized momentum and dis-placement
for inertias and capacitances, respectively, where the time derivatives of generalized momentum p and displacement g
are generalized efforts e and flow f. Changes of state are possible due to the power-conserving elements, including the
power-continuous generalized transformer (TF) and gyrator (GY) elements which algebraically relate elements of the
effort and flow vectors in and out of the element. In certain cases, for instance, the large motion of rigid bodies in
which coordinate transformations are functions of the geometric state, the constitutive laws of these power-conserving
elements are often state modulated. Also, the dynamic force equilibrium and velocity summations in rigid body systems
are represented by power-conserving elements called 1 and 0 junctions, respectively.

Variable General Translation Rotation
Effort e(t) Force Torque
Flow 11 f} Velocity Angular

’ Velocity
Momentum p= J.c’(r'.f Linear Angular

momentum momentum
Displacement [ rad Displacement Angular
= T
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Figure A1. The generalized bond graph quantities
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Figure A2. The bond graph elements
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Appendix B
The Bond Graph Drillstring Model
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Figure B1. The bond graph numerical model of a rotary drillstring.
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