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Optimizing	 water	 injection	 rate	 distribution	 in	 waterflooding	
operations	 is	 a	 vital	 reservoir	 management	 aspect	 since	 water	
injection	capacities	may	be	constrained	due	to	geographic	location	
and	facility	limitations.	Numerical	grid-based	reservoir	simulation	is	
traditionally	used	to	evaluate	and	predict	waterflood	performance.	
However,	the	reservoir	simulation	approach	can	be	time-consuming	
and	expensive	with	the	vast	amount	of	wells	data	in	mature	fields.	
Capacitance	Resistance	Model	(CRM)	has	been	widely	used	recently	
as	 a	 data-driven	 physics-based	 model	 for	 rapid	 evaluation	 in	
waterflood	projects.	 Even	 though	CRM	has	 a	 smaller	 computation	
load	 than	 numerical	 reservoir	 simulation,	 large	 mature	 fields	
containing	 hundreds	 of	 wells	 still	 pose	 a	 challenge	 for	 model	
calibration	and	optimization.	In	this	study,	we	propose	an	alternative	
solution	to	improve	CRM	application	in	large-scale	waterfloods	that	
is	 particularly	 suitable	 for	 peripheral	 injection	 configuration.	 Our	
approach	 attempts	 to	 reduce	 CRM	 problem	 size	 by	 employing	 a	
clustering	algorithm	to	automatically	group	producer	wells	with	an	
irregular	peripheral	pattern.	The	selection	of	well	groups	considers	
well	position	and	high	throughput	well	(key	well).	We	validate	our	
solution	through	an	application	 in	a	mature	peripheral	waterflood	
field	case	in	South	Sumatra.	Based	on	the	case	study,	we	obtained	up	
to	 18.2	 times	 increase	 in	 computation	 speed	 due	 to	 parameter	
reduction,	with	excellent	history	match	accuracy.	
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INTRODUCTION	
Waterflooding	has	been	a	technically	and	economically	proven	way	to	increase	oil	reserves	in	mature	fields	
after	primary	depletion	(Temizel	et	al.,	2017;	Thakur,	1991;	Willhite,	1986).	Field	experience	shows	that	a	
well-implemented	waterflood	can	increase	the	oil	recovery	factor	to	35	–	45%	of	its	original	in	place	(Zitha	
et	 al.,	 n.d.).	 Modern	 waterflood	 asset	 management	 to	 ensure	 maximum	 economic	 value	 requires	
comprehensive	technical	and	operational	planning	that	needs	to	be	continuously	improved	(Thakur,	1998).	
In	waterflooding	operations,	one	of	the	most	essential	aspects	of	reservoir	management	is	optimizing	the	
water	injection	rate	distribution.	This	is	necessary	since	water	injection	capacity	may	be	limited	due	to	the	
facility's	location	or	the	surrounding	geography.	Interwell	connectivity	between	injection	and	production	
wells	is	a	key	component	to	define	to	gain	an	understanding	of	waterflood	performance.	This	is	because	
interwell	connectivity	strongly	correlates	with	the	waterflood	sweep	efficiency	(Albertoni	&	Lake,	2003;	
Møyner	et	al.,	2015).		

Traditionally,	numerical	grid-based	reservoir	 simulation	 is	used	 for	waterflood	performance	evaluation	
and	 prediction.	 Numerical	 reservoir	 simulation	 is	 regarded	 as	 the	 most	 robust	 approach	 due	 to	 its	
foundation	in	flow	physics	and	its	ability	to	include	realistic	geological	assumptions.	However,	the	reservoir	
simulation	approach	can	be	time-consuming	and	expensive	with	the	vast	amount	of	wells	data	in	mature	
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fields.	This	can	hinder	the	decision	process	and	lead	to	delayed	action	to	optimize	waterflood	operations.	
Hence,	an	improved	method	is	still	needed	to	analyze	waterflood	performance.		

The	data-driven	modeling	methodology	has	recently	acquired	favor	 in	various	research	areas,	 including	
reservoir	engineering,	and	fundamentally	transformed	the	petroleum	business	due	to	recent	advances	in	
real-time	sensors	and	computer	technologies.	This	strategy	has	radically	transformed	the	petroleum	sector	
as	a	consequence.	Data-driven	modeling,	abbreviated	DDM,	refers	to	a	collection	of	methods	that,	when	
applied	to	operational	data,	enable	the	efficient	computing	of	model	predictions	that	are	both	sufficiently	
accurate	 and	 representative	 of	 the	 actual	 system	 (Balaji	 et	 al.,	 2018).	 This	 traits	 is	 essential	 for	
implementing	the	closed-loop	reservoir	management	(CLRM),	as	the	model	need	to	be	executed	on	real-
time	(Gildin	&	Lopez,	2011).	DDM	typically	involves	a	machine	learning	(ML)	algorithm	to	train;	however,	
the	inclusion	of	a	physics-based	model	in	DDM	can	resolve	the	limitation	of	a	sole-ML-based	model.	This	is	
known	as	 the	grey-box	approach	(Liu	et	al.,	2021).	Several	data-driven	grey-box	models	 for	waterflood	
performance	 prediction	 and	 optimization	 have	 been	 developed,	 such	 as	 Capacitance	 Resistance	Model	
(Sayarpour	et	al.,	2009;	Yousef	et	al.,	2006),	INSIM	(Guo	et	al.,	2018;	Zhao	et	al.,	2015),	and	Network	Models	
(Kiær	et	al.,	2020;	Wang	et	al.,	2021).	These	methods	differ	in	physical	assumption	used	and	implementation	
complexity.	A	detailed	comparison	between	data-driven	methods	for	waterflood	performance	evaluation	is	
available	in	other	works	(Artun,	2017;	Balaji	et	al.,	2018).	Overall,	CRM	is	the	most	widely	used	approach	
due	to	its	ease	of	implementation	and	fundamental	physical	basis.	

An	equation	for	the	mass	balance	differential	is	derived	for	an	injection	and	production	system	in	a	closed	
control	volume,	which	is	the	foundation	of	the	CRM	model.	By	finding	a	semi-analytical	solution	to	these	
differential	 equations,	 a	 rapid	 calculation	 can	 be	 performed	 in	 order	 to	 evaluate	 CRM.	 Constant	
characteristics	 linked	 to	 inter-well	 connectivity,	 system	 compressibility,	 and	 well	 productivity	 index	
characterize	production	response	from	the	injection	in	the	CRM.	Through	minimizing	the	model	response	
error	to	historical	production	and	bottom-hole	pressure	data	with	the	actual	injection	rate	as	input,	CRM	
parameters	can	be	established.	As	a	result,	CRM	can	evaluate	the	effectiveness	of	a	mature	waterflood	by	
only	 using	 a	 few	 data	 types	 and	 without	 having	 to	 first	 acquire	 an	 understanding	 of	 the	 reservoir's	
parameters.	 Albeit	 CRM	 is	 regarded	 as	 a	 simplified	 physics	model,	 it	 has	 been	 shown	 to	 be	 reliable	 in	
predicting	 short-term	waterflood	 performance	 and	 can	 be	 an	 excellent	 preliminary	 study	 before	 using	
detailed	numerical	modeling	approach	(Davudov	et	al.,	2020;	Sayarpour	et	al.,	2009).	

Even	though	CRM	has	a	smaller	computation	load	than	numerical	reservoir	simulation,	large	mature	fields	
containing	hundreds	of	wells	still	pose	a	challenge	for	model	calibration	and	optimization.	The	number	of	
parameters	to	be	solved	simultaneously,	well	downtime,	and	data	outliers	have	been	regarded	as	the	main	
factors	that	restrict	CRM	application	in	large-scale	reservoirs	(Weber	et	al.,	2009).	Several	attempts	have	
been	proposed	to	improve	CRM	performance	in	large-scale	reservoirs,	including	problem	size	reduction	by	
removal	 of	 inactive	 wells	 and	 producer	 wells	 beyond	 the	 radial	 distance	 limit	 (Weber	 et	 al.,	 2009);	
alternative	CRM	formulation	using	Integrated	Capacitance	Resistance	Model	(Nguyen	et	al.,	2011);	and	use	
of	 global	 optimization	 solvers	 (JAMALI	 &	 ETTEHADTAVAKKOL,	 2017).	 However,	 no	 universal	 solution	
exists	for	CRM	treatment	in	large-scale	waterflood	applications.	

In	this	study,	we	propose	an	alternative	solution	to	improve	CRM	application	in	large-scale	waterfloods	that	
is	 particularly	 suitable	 for	 peripheral	 injection	 configuration.	 Our	 approach	 attempts	 to	 reduce	 CRM	
problem	size	by	employing	a	clustering	algorithm	to	automatically	group	producer	wells	with	an	irregular	
peripheral	pattern.	The	 selection	of	well	 groups	 considers	well	position	and	high	 throughput	well	 (key	
well).	We	validate	our	solution	through	an	application	in	a	mature	peripheral	waterflood	field	case	in	South	
Sumatra.	The	proposed	method	reduces	computation	time	and	provides	accurate	model	calibration.		

METHODOLOGY	&	FIELD	CASE	

Methodology	

The	 capacitance	 resistance	 model	 (CRM)	 characterizes	 a	 flooded	 reservoir	 by	 estimating	 interwell	
connectivities,	 time	 constants,	 and	 productivity	 indices	 using	 production/injection	 rates	 for	 history	
matching.	Assuming	each	injector	and	producer	is	represented	by	a	particular	control	volume	(CRM-IP),	
and	the	reservoir	only	contains	two-phase	immiscible	fluid,	the	rate	continuity	for	each	control	volume	is	
defined	as	(Yousef	et	al.,	2006).		

𝑑𝑞!"(𝑡)
𝑑𝑡 + 	

1
𝜏!"
	𝑞!"(𝑡) = 	

1
𝜏!"
	𝑓!"𝑖!(𝑡) − 𝐽!"

𝑑𝑝#$,"
𝑑𝑡 	 (1)	

where	𝑞!" 	is	the	production	rate	of	producer-𝑗	from	injector-𝑖	and	producer-𝑗	control	volume	(see	Figure	2),	
𝑓!" 	is	the	allocation	factor	of	injection	rate	that	represents	the	contribution	of	injection	from	injector-𝑖	to	
producer-𝑗,	where	the	sum	of	allocation	factor	for	each	injector	should	not	exceed	one	to	maintain	mass	
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continuity.	 𝜏!" 	 is	 the	 time	 constant	 for	 each	 injector-producer	 pairs,	 which	 account	 for	 the	 system	
compressibility,	i.e.,	

𝜏!" = 1
𝑐&𝑉'
𝐽 4

!"
 (2)	

By	assuming	a	constant	injection	rate	at	a	specified	time	interval,	Δ𝑡( ,	and	linear	BHP	variation,	the	semi-
analytical	solution	to	the	ordinary	differential	equation	of	Eq.	(1)	for	liquid	production	rate	prediction	can	
be	written	as	(Sayarpour	et	al.,	2009)	

𝑞!"(𝑡() = 𝑞!"(𝑡()*)𝑒
)∆&!
,"# + 7	1 − 𝑒

)∆&!
,"# 8 9	𝑓!" 	𝐼!

(() − 	𝐽!" 	𝜏!"
∆𝑝#$

(()

∆𝑡(
<	 (3)	

Furthermore,	assuming	producer	wells	operate	at	constant	 flowing	bottom-hole	pressure,	as	 typical	 for	
producer	wells	with	artificial	lift	(i.e.,	SRP,	ESP),	Eq.	(3)	becomes		

𝑞!"(𝑡() = 𝑞!"(𝑡()*)𝑒
)∆&!
,"# + 7	1 − 𝑒

)∆&!
,"# 8 =	𝑓!" 	𝐼!

(()>	 (4)	

The	total	production	rate	for	each	producer	is	the	sum	of	the	contribution	from	all	of	the	injectors,	which	
can	be	expressed	as	

𝑞"(𝑡) = ?  

/"$#

!0*

𝑞!"(𝑡)	 (5)	

Injection	well	allocation	factor,	𝑓!" 	and	time	constant,	𝜏!" 	are	calibrated	by	minimizing	the	misfit	between	
CRM	production	rate	output	(𝑞12&)	and	observed	production	data	(𝑞342).	We	used	mean	squared	error	as	
the	objective	function	to	minimize,	such	that		

𝑀𝑆𝐸 =
∑ (𝑞342 − 𝑞12&)5
/%&'&
60*

𝑁78&8
	 (6)	

The	empirical	fractional	flow	model	represents	oil	rate	production	in	our	CRM	implementation.	We	used	
(Gentil,	2005)	 	fractional	flow	model,	which	relates	oil	 fractional	flow	(𝑓3)	to	cumulative	water	injection	
(𝑊!).	This	model	is	valid	for	high	water	cut	wells	(𝑊𝐶 > 90%),	

𝑓3(𝑡) =
1

1 + 𝐹#3
=

1
1 + 𝛼𝑊!

9	 (7)	

Empirical	constants	in	Eq.	(7),	𝛼	and	𝛽	can	be	calibrated	using	the	same	method	as	liquid	production	rate	
match,	 but	 oil	 rate	 data	 is	 used	 instead.	 We	 applied	 the	 interior-point	 algorithm	 (Byrd	 et	 al.,	 1999)	
implemented	in	MATLAB	fmincon	function	to	obtain	the	model	parameters	(𝑓!" , 𝜏!" , 𝛼, 𝛽)	that	minimizes	the	
error	function	(Eq.	6).		

	
Figure	1	Workflow	of	CRM-IP	Cluster	(CRM-IPC)	
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Figure	1	shows	our	adjusted	workflow	of	CRM-IP	to	implement	CRM-IP	with	clustering	(CRM-IPC).	CRM-
IPC	essentially	groups	the	producers	into	clusters	that	combine	(sum	up)	all	the	producer	rates	in	the	same	
cluster	 at	 each	 period.	 The	 justification	 for	 this	 approach	 is	 that	 production	 wells	 will	 take	 injection	
contributions	from	temporary	shut-in	producer	wells	close	to	each	other.	Hence,	this	clustering	method	
also	works	as	a	way	to	normalize	production	data.	After	clustering,	the	input	data	can	be	treated	as	the	
original	CRM-IP	calculation	with	‘less’	producer	well,	as	illustrated	in	Figure	2.		

	

	
	

Figure	2	Illustration	of	injector–clustered	producer	pair-based	control	volume,	CRM-IPC.	Control	volumes	originating	
from	the	injector	are	permutated	to	all	production	well	clusters.	Grey	lines	represent	contour	depth	for	a	typical	

anticline	structure.	

A. Optimal	Cluster	Center	Determination	

We	adjust	 the	kmeans++	algorithm	 (Arthur	&	Vassilvitskii,	 2007)	 cluster	 center	 seeding	probability	by	
using	each	well	average	liquid	production	rate	as	weighting.	This	will	promote	the	cluster	centroids	to	be	
closer	to	the	well	with	high	liquid	rates	(key	wells)	as	it	should	correspond	to	wells	with	higher	injection	
allocation.	The	algorithm	for	carefully	seeding	the	cluster	center	with	weighting	is	given	as	follows: 

Table	1.	kmeans++	algorithm		

Algorithm	1:	Kmeans++	with	weighting	(Arthur	&	Vassilvitskii,	2007)	

1. Take	one	center	c1,	chosen	uniformly	at	random	from	𝜒.	

2. Take	a	new	center	ci,	choosing	𝑥	∈	𝜒.	with	probability	
𝐷!𝑥2"𝑄𝑙
∑ 𝐷(𝑥)2𝑥∈Χ

.	 ,	 let	D(x)	denote	the	shortest	
distance		from	a	data	point	to	the	closest	center	we	have	already	chosen	

3. Repeat	Step	2.	until	we	have	taken	k	centers	altogether.	
4. For	each	i	∈	{1,...,k},	set	the	cluster	Ci	to	be	the	set	of	points	in	X	that	are	closer	to	ci	than	they	are	

to	cj	for	all	j=	i.	3.	For	each	i	∈	{1,...,k},	set	ci	to	be	the	center	of	mass	of	all	points	in	Ci.		
5. Repeat	Steps	3	and	4	until	C	no	longer	changes.	

	

B. Optimal	Cluster	Number	Determination	

To	 determine	 the	 optimal	 number	 of	 well	 clusters,	 we	 use	 Silhouette	 Values	 as	 guidance.	 Note	 that	
engineering	 judgment	 is	 still	 needed	 to	 choose	 adequate	 cluster	 configuration	 for	 very	 dispersed	well	
locations,	as	clustering	algorithms	can	give	different	results	for	each	iteration	due	to	initial	random	cluster	
seeding.	The	silhouette	value	for	each	point	measures	how	similar	it	is	to	points	in	its	cluster	compared	to	
points	in	other	clusters;	hence	it	is	a	good	metric	to	measure	cluster	distribution. 

Cluster	2	
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The	silhouette	value	Si	for	the	ith	point	is	defined	as	(Kaufman	&	Rousseeuw,	1990)	

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max	(𝑎𝑖, 𝑏𝑖)
	 (8)	

	
where	ai	is	the	average	distance	from	the	ith	point	to	the	other	points	in	the	same	cluster	as	i,	and	bi	is	the	
minimum	average	distance	from	the	ith	point	to	points	in	a	different	cluster,	minimized	over	clusters.	

The	silhouette	value	ranges	from	–1	to	1.	A	high	silhouette	value	indicates	that	is	well	matched	to	its	own	
cluster	and	poorly	matched	to	other	clusters	.	The	clustering	solution	is	appropriate	if	most	points	have	a	
high	silhouette	value.	If	many	points	have	a	low	or	negative	silhouette	value,	the	clustering	solution	might	
have	too	many	or	too	few	clusters.	With	any	distance	metric,	silhouette	values	can	be	used	as	an	evaluation	
criterion	for	clustering.		

Field	Case	Study	

K	Field	is	an	oilfield	located	in	South	Sumatra,	Indonesia.	Major	oil	production	contribution	came	from	reefal	
carbonates	with	a	minor	contribution	from	sandstone	layer.	Fluid	type	in	K	Field	is	considered	as	black	oil	
with	 API	 gravity	 of	 38o	 API.	 The	 reservoir	 is	 comprised	 of	 a	 single	 continuous	 zone	with	minor	 faults	
existence.		The	carbonates	layer	have	good	reservoir	quality	except	in	several	local	areas	where	tight	facies	
occur,	 providing	 a	 permeability	 barrier	 and	 stratigraphic	 entrapment	 exceeding	 the	 simple	 four-way	
structural	closures.	In	contrast,	the	sandstone	reservoirs	are	rather	tight.	 

The	 K	 Field	 is	 in	 peripheral	 waterflooding	 after	 its	 primary	 recovery.	 Wellcount	 in	 K-Field	 is	 at	 383	
production	wells	which	can	be	divided	into	61	groups.	In	this	study,	we	will	only	consider	an	isolated	well	
group	that	consists	of	58	producer	wells	and	36	injection	wells.	The	depth	structure	map	for	K-Field	and	
wells	locations	is	given	in	Figure	3.	Production	and	injection	rate	data,	including	voidage	replacement	ratio	
(VRR)	used	in	this	study,	are	given	in	Figure	4a	&	4b,	respectively.	VRR	denotes	the	ratio	between	total	
injection	and	production	rate,	hence	VRR	values	close	to	one	imply	that	the	flood	is	balanced.	Figure	5	shows	
the	average	reservoir	pressure.	

	

Figure	3.	Depth	Structure	Map	for	Investigated	Field	(Red:	Injector	Wells,	Purple:	Producer	Wells)	
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Figure	4.	(a)	Field	Production	and	Injection	Rate	Data,	(b)	Voidage	Replacement	Ratio	Plot	

 

 
 

Figure	5.	K-Field	Average	Reservoir	Pressure 
The	VRR	trend	(Figure	4b)	 indicates	a	good	balance	between	 total	 injection	and	production	rate	as	 the	
values	range	between	1	–	1.2.	Waterflood	response	is	also	clearly	observed	by	comparing	production	rate	
changes	as	injection	rates	fluctuated	from	historical	data	(Figure	4a).	As	previously	explained,	having	a	rich	
response	signal	 from	rate	data	 is	essential	 for	CRM	calibration.	Based	on	 the	VRR	guide,	 the	 liquid	rate	
history	match	in	CRM	will	start	from	the	20th	month.	Log-log	WOR-cum	plot	(Figure	6)	showed	that	the	
criteria	of	frontal	advance	applicability	had	been	reached	for	this	field	(Ershaghi & Abdassah, 1984).	

	
Figure	6.	Log-log	plot	of	Water	Oil	Ratio	and	Cumulative	Water	Injected	from	Field	Data.	Straight	line	trend	obtained	

at	the	end	of	flood	period	denote	the	applicability	range	of	empirical	fractional	flow	model	

(a)	 (b)	

𝑽𝑹𝑹 = 𝟏	
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Bubble	plots	map	can	effectively	aid	in	monitoring	waterflood	performance.	This	is	especially	important	in	
the	K	field	due	to	its	peripheral	nature.	Several	relevant	bubble	plot	maps,	such	as	cumulative	oil	produced,	
cumulative	liquid	produced,	cumulative	water	injected,	and	liquid	production	rate,	are	given	in	Figure	7a	
and	7b,	respectively.	Due	to	all	of	the	production	wells	being	operated	using	an	artificial	lift,	it	is	assumed	
that	constant	bottom-hole	pressure	approximation	is	suitable	for	this	field.	

	 	
	 	

Figure	7.	Bubble	plot	maps	of	(a)	Cumulative	oil	produced,	(b)	Cumulative	water	injected	

It	can	be	observed	from	the	bubble	plot	maps	that	water	injection	is	quite	equally	distributed	among	all	
injectors.	Another	notable	observation	is	that	the	highest	oil-producer	wells	are	located	in	the	northeastern	
region,	which	is	the	furthest	from	injectors.	

Due	to	CRM	formulation,	production	data	are	preprocessed	to	be	suitable	for	CRM	input.	Rate	entries	that	
show	zero	value	(shut-in)	are	excluded	from	the	input.	Wells	that	have	significantly	low	rates	or	have	ceased	
to	operate	are	also	excluded.	The	prepared	data	are	then	used	as	input	for	CRM	calibration	and	forecast	to	
find	 the	 optimal	 allocation	 rate	 at	 the	 current	 injection	 capacity	 that	 delivers	maximum	 cumulative	 oil	
produced.	

RESULTS	&	DISCUSSIONS	

Well	Clustering	

Based	on	silhouette	values	sensitivity,	we	find	that	six	clusters	(𝑘 = 6)	are	adequate	to	classify	well	groups	
in	K-Field.	Plots	of	well	cluster	distribution	are	given	in	Figure	8.	We	also	provide	clustering	results	using	
the	general	K-means	algorithm	for	comparison.	It	can	be	inferred	that	weighted	k-means++	gives	a	more	
balanced	 cluster	 and	have	 closer	 centroids	 to	 the	highest	oil	 rate	producers	 (see	Figure	7a).	 Silhouette	
values	of	the	K-Field	cluster	configuration	are	given	in	Figure	9. 

	
Figure	8.	Clustering	Result	for	Field	K	using	six	clusters	(𝑘 = 6):	with	general	K-means	(left)	and	K-means++	with	

weighting	(right)	
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Figure	9.	Silhouette	Values	of	K-Field	Clustering	

History	Match	of	Liquid	and	Oil	Production	Rates	(CRM	Calibration)	

We	performed	a	liquid	rate	history	match	to	calibrate	CRM-IPC	time	constants	and	cluster	allocation	factors.	
Figure	10	show	the	liquid	rate	comparison	between	calibrated	CRM-IPC	results	and	data	at	cluster	levels.	
As	 per	 the	previous	discussion,	 the	 history-matched	period	 started	when	 the	waterflood	was	 balanced	
(𝑉𝑅𝑅	 ≈ 1).	CRM-IPC	liquid	history	match	result	is	quite	satisfactory	and	consistent	with	‘unclustered’	CRM-
IP.	We	obtain	18.2x	increase	in	computation	speed	due	to	unknown	parameters	reduction	from	52	wells	to	
6	clusters.	

	
Figure	10.	K-Field	Cluster	Liquid	Rate	History	Match	with	CRM-IPC	

Figure	11	show	the	oil	rate	history-match	result	for	field	level	and	cluster	level,	respectively,	using	CRM-IPC.	
The	match	result	is	generally	quite	satisfactory	and	faster	than	the	original	CRM-IP	implementation	on	the	
same	 field	 (see	Nugroho	 et	 al.,	 2021).	 However,	we	 note	 that	match	 results	 at	 a	 later	 period	 could	 be	
improved	for	a	better	forecast.	Error	(MSE)	weighting	at	this	later	period	is	planned	to	alleviate	this	issue.	

The	CRM-IPC	connectivity	map	is	given	in	Figure	12.	The	arrow	length	represents	allocation	factor	values	
from	 the	 injector	 to	 the	 connected	 producer.	 It	 can	 be	 inferred	 that	 the	 reservoir's	 northern	 part	 has	
stronger	connectivity	than	its	southern	part.		
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Figure	11.	K-Field	Cluster	Oil	Rate	History	Match	with	CRM-IPC	

	
Figure	12.	K-Field	Connectivity	Map	from	calibrated	CRM-IPC	

Prediction	and	Injection	Allocation	Optimization		

After	the	CRM-IPC	time	constant	and	allocation	factor	has	been	calibrated.	We	performed	a	forecast	of	the	
waterflood	performance	for	the	base	case	(current	allocation)	and	optimized	the	allocation	scenario.	It	is	
assumed	that	total	injection	capacity	is	held	constant,	so	the	optimization	will	focus	on	how	to	reallocate	
water	injection.		A	comparison	of	the	forecasted	oil	rate	and	cumulative	for	both	scenarios	is	given	in	Figure	
13.	By	reallocating	water	injection,	it	is	estimated	that	we	will	obtain	300	MSTB	incremental	oil	gain	in	10	
years. 



Capacitance	Resistance	Clustered	Model	for	Mature	Peripheral	Waterflood	Performance	Prediction	&	Optimization	
(B	Aslam,	H	Nugroho,	F	Mahendra,	R	Kurnia,	T	Marhaendrajana,	S	Siregar	)	

122	|	P a g e 	
 

	
Figure	13.	K-Field	Base	and	Optimized	Forecast.	Constant	total	injection	capacity	case		

To	gain	better	comprehension	visually,	the	average	injection	rate	for	each	base	and	optimized	the	case	in	
bubble	maps	were	plotted	(Figure	14).	From	this	bubble	map,	we	can	observe	 that	 the	 injection	rate	 is	
allocated	more	to	northwest	injectors.	This	optimization	direction	is	automatically	chosen	due	to	higher	
connectivity	in	the	northern	part	of	the	reservoir.	

	
Figure	14.	Bubble	Map	of	Injection	Rate	Comparison	with	constant	total	injection	capacity	case:	base	case	(left)	and	

optimized	allocation	for	clustered	producer	case	(right)		

CONCLUSIONS		
Notable	findings	that	we	originated	from	this	study	are:	

1. This	 study	 presents	 improved	 CRM-IP	 implementation	 for	 peripheral	waterflooded	 fields	with	
extensive	injection	and	production	wells	by	employing	a	clustering	algorithm	for	well	clustering.	
Well	rate	weighted	k-means	algorithm	gives	a	more	balanced	cluster	and	has	closer	centroids	to	
the	highest	liquid	rate	producers	than	the	original	k-means	algorithm.	

2. Based	on	the	evaluated	case	study,	CRM-IP	with	the	clustering	method	gave	up	to	18	times	faster	
computation	 time	 during	 model	 calibration	 (history	 match)	 than	 the	 original	 CRM-IP	 while	
retaining	 similar	 accuracy.	 Thus,	 it	 can	 improve	 CRM-IP	 applications	 for	 large-scale	 peripheral	
waterflood	projects.	

3. The	 radius	of	 influence	 constraints	 to	 control	 clustering	 choice	needs	 to	be	 investigated	 in	 the	
future	to	avoid	having	a	very	dispersed	production	well	cluster.	
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APPENDIX	A	–	Code/Software	Availability	

To	implement	the	CRM-IPC	practically	and	efficiently,	we	develop	standalone	desktop	software	for	our	code	
in	a	windows	environment.	This	will	allow	the	user	to	utilize	the	CRM-IPC	implementation	without	needing	
a	MATLAB®	license.	This	software	will	be	the	starting	point	of	the	next	improvement	in	our	waterflood	
data-driven	 modeling	 research.	 	 The	 readers	 can	 access	 and	 modify	 the	 code	 through	 the	 github	
repositories:		https://github.com/billalaslam/crmwaterflood_matlab.git	 

	

	
Figure	15.	CRM	WFDDM	v1.0	Graphical	User	Interface	(GUI)	
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