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Most Indonesian social media users under the age of 25 use various words, which
are now often referred to as slang, including abbreviations in communicating. Not
only causes, but this variation also poses challenges for the natural language pro-
cessing of Indonesian. The previous researchers tried to improve the Recurrent
Neural Network to correct errors at the character level with an accuracy of 83.76%.
This study aims to normalize abbreviated words in Indonesian into complete words
using a Recurrent Neural Network in the form of Bidirected Long Short-Term
Memory and Gated Recurrent Unit. The dataset is built with several weight config-
urations from 3-Gram to 6-Gram consisting of words without vowels and complete
words with vowels. Our model is the first model in the world that tries to find in-
complete Indonesian words, which eventually become fully lettered sentences with

an accuracy of 97.44%.
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1. INTRODUCTION

Language is a communication medium to convey ideas or thoughts from one person to another.
Bahasa Indonesian is the national language standard of the Indonesian people in the daily speaking envi-
ronment [1]. Along with the development of society in communication, they change the way of delivery
through social media into a new language or what we usually call slang [2]. The reason for the emergence of
slang on social media is the lack of enthusiasm to use Indonesian in its entirety, giving a formal impression
and causing awkwardness among users under the age of 25 [3].

The use of slang has resulted in the creation of new words depending on the user, such as variations
in typing [4], excessive writing of, completely new words [5], conjugation between two or more words,
or even words that abbreviated [6][7]. This often creates gaps and misunderstandings in communication
[8][9]. Furthermore, it poses challenges at the preprocessing stage of Indonesian text in natural language
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processing [10]. The resulting words are isolated from other communities due to increased vocabulary but
low references. The Term Frequency — Inverse Document Frequency score is high, meaning the word has
high priority [11]. However, this is not true because it could be just as supporting words in a sentence. Word
mapping can use Word2Vec [12] or FastText [13] to find out how similar it is to other words, but that will
only add unnecessary vocabulary and memory during processing.

In this study, we focus on normalizing abbreviated words that occur in Indonesian, especially words
without vowels, because they are very ambiguous. Because, without the abbreviated words, homograph
words can create ambiguity for the reader if we do not read the context words. For example, a sentence like
”Saya punya apel” could refer to apples or a morning routine where employees gather in the field for a brief
pre-work briefing. Furthermore, suppose we shorten this sentence to ’sy pny pl”. In that case, it will become
even more confusing because it can mean ”Saya punya palu”, ”Saya punya apel”, ”Saya punya pala”, ”’Saya
punya pel”, etc.

The following are previous studies that are relevant to this research. Suppose we can see the abbrevi-
ated words as typos. In that case, there are several techniques that the previous researchers tried to improve,
such as using Long Short-Term Memory (LSTM) to correct errors at the character level with an accuracy
of 83.76% [14], uses Levenshtein-Damerau for typos in Indonesian with 75% accuracy [15]. Meanwhile,
Recurrent Neural Network (RNN) can be used to translate language from one to another, such as translating
English phrases into Indonesian with an accuracy of 88.57% [16], identifies Arabic script with a gray level
Co-occurrence matrix which shows an accuracy of 78.75% [17], identifies automatically named entities in
Indonesian to get the best results F-size 0.72 [18], and uses RNN for automatic sentence summary [19].

To our best knowledge, our research is the first in the world that uses RNN to change Indone-
sian sentences without vowels into sentences with complete words with vowels by implementing the model
through several datasets and different architectures. This paper is structured as follows. Part I as an intro-
duction. Part II discusses the design of RNN models used in this paper, which are based on LSTM and GRU,
with Bidirectional variation. Section III discusses the accuracy of the algorithm model. Lastly, section IV
concludes the performance of the RNN algorithm model.

2. METHOD

This research has two phases for building the model: processing the dataset and designing the
architecture. The dataset is prepared in various ways that each version can fit into the designed architecture.
Four primary datasets are prepared based on the Indonesian News Dataset [20], where each is modified
based on its N-Gram value. After the dataset is ready to be used, the model architectures are prepared
to train the dataset. Each dataset has six different models, each divided based on RNN gate cells and the
number of layers. Since we had four datasets, 24 models are being tested in this research.

2.1. Dataset Preprocessing

The dataset is obtained from collecting Indonesian news with five categories labeled inside [20].
These labels are soccer, news, business, technology, and automotive. The dataset comprises 6.127 news
from various Indonesian news outlets, whereas the most comprehensive article consists of 8.973 characters.

However, this Indonesian news dataset is transformed into a different dataset suitable for our re-
search. The categories are ignored, then all the contents are joined into single long sentences. This lengthy
sentence is further preprocessed into five different datasets depending on the N-gram configuration words
per sentence. The configurations are 2-gram, 3-gram, 4-gram, 5-gram, and 6-gram.

N-gram is a model used to solve word ambiguity [21]. An example of the use of n-gram when there
is the word “bisa” which contains various meanings. The first meaning of “’bisa” is poison, a noun such as
in the sentence of ular mengeluarkan bisa”. The other meaning of “bisa” is able, an adjective word such as
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in the sentence “manusia bisa duduk”. Thus, to solve the ambiguity of the word, n-gram models are needed.

For example, let us assume that S is the sentence that will be converted into a dataset with a 3-gram
configuration where S = hari ini saya pergi ke pasar bersama dengan ibu dan ayah ...”. Since this research
aims to reconstruct non-vocalized sentences into vocalized sentences, the sentence S is split into X and Y,

99 99

where X is 3-gram words without vowels and Y is 3-gram words with vowels, resulting in X = ”hr n sy”, ’n
sy prg”, ’sy prg k”, ”...” and Y = "hari ini saya”, “’ini saya pergi”, ’saya pergi ke”, ”...”. The dataset example
can be seen in Table 1.

To construct these datasets, we initially convert all datasets’ contents to lowercase. Then, we employ
regular expressions to derive dataset Y by filtering out any alphabetical characters and spaces using the
regex pattern [a—-zA-Z\ ]. From dataset Y, we then apply regular expressions once more to eliminate any

vowels, retaining only consonants through the removal of the pattern [ "aeiouAEIOQU] .

Table 1. The Preprocessed Datasets

Dataset X Y
3-Gram hr n sy hari ini saya
brsmbd bersama ibu dan
4-Gram hr n sy prg hari ini saya pergi
brsm b d yh bersama ibu dan ayah

5-Gram hr n sy prg k hari ini saya pergi ke
brsm b d yh sng bersama ibu dan ayah siang

6-Gram hr n sy prg k psr hari ini saya pergi ke pasar

brsm b d yh sng sng  bersama ibu dan ayah siang siang

Each sentence inside the dataset will be further preprocessed by splitting them into characters. The
sentence will be tokenized based on its character, not the word. This is crucial because we would like the
model to understand the relationship between two sentences with more creativity in filling the vocal gaps,
not only based on word vocabulary. This will give a better advantage when the model sees an unseen word
before so that the model can guess the new word’s vocal without losing too much accuracy.

After tokenizing the sentence into the number vector, each vector will be normalized to the same
length. In other words, the vector is padded with O until all the vectors have the same length. The length is
determined as max S, the longest sentence in terms of characters within the dataset. Then, we shuffle the
dataset so that the model can learn the pattern in a more distributed way.

2.2. RNN

Recurrent Neural Network is a machine learning method based on neural network learning that
resembles the human brain system in capturing patterns. RNN is one of the neural network methods that
can be used. Unlike other neural network methods, RNN is famous for its ability to form predictions based
on previous predictions [22].

Recurrent neural network is a sequential network in which each output generated is derived from
the most recent input and the previous output.This network performs poorly on data with large sequence
lengths. However, the performance shown is good for sequence data with a length of 3-5 only [23]. This
sequential data has a dependence on one another as input in the form of words that make up sentences
or collections of sentences that make up documents to get the actual context. Classifying time series and
sequential data is characteristic of the RNN. Own time series data is data that is combined according to the
order of time within a certain range, while sequential data is a sample of data that is processed sequentially
and each sequence relates to each other [24].

Based on architectural diagram that shows the RNN process in a position that is not open to the
full network. The symbol x; is the input at each time step. The symbol s; is the hidden state or memory
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at each time step ¢. The hidden state can be alluded to as the memory of a network that can store the
result of calculations and the records that have been done. The following is the formula for the function
st = f(Uxy + Ws—1). The symbol o is the output for each step t. Here’s the formula for the function
ot = softmax(Vsy).

There are two kinds of RNN cell used in this paper, LSTM cell and GRU gate. LSTM is one
kind of RNN that has short term and long term memory capabilities [25]. LSTM is able to execute large
datasets but requires a long time in terms of execution of a data. LSTM has three gates for reading, storing,
and updating information. The gate consists of input gates, forget gates, and output gates so that LSTM
is suitable for forecasting cases such as wind forecasting [26], stock price prediction, [27][28] trajectory
prediction, [29][30] and character-based text generalization [31].

The LSTM training process through gate functions sequentially from forget gates, input gates, and
output gates is then continued with the iterative process as many epochs as determined by adam optimization,
activation using softmax and training results in the form of HDF5 or .h5 files. In the LSTM network there
are forget gates, input gates, output gates and memory cell that will calculate the output value as a hidden
layer for the next network [32].

Inside LSTM, there are Forget Gate (f;), Input Gate (4;), and Output Gate (o). The Forget Gate has
the output and input values combined to pass the function on sigmoid activation. In this process, it is deter-
mined whether the previously obtained information will be forgotten or not. Furthermore, the information
will be forwarded to the cell state or memory cell [32][33]. The Forget Gate follows the following equation,
ft = o(Wy x [x¢ + hy—1] + bs). In this case, f; is forget gate, Wy is weights forget gate, h;_ is output cell
previously, o is sigmoid activation function, x; is input cell and by is bias forget gate.

The Input Gate has the output and input values combined, which will then be through two activation
functions. The first path will pass through the activation function sigmoid to enter the input value. The other
path will pass through the function activate tanh to enter a candidate memory cell value [32][33]. The Input
Gate has the following equation, i; = o(W; x [x; + hy—1] + b;) and C, = tanh(W, x [xy + he—1] + be).
In this case, 7; is input gate, Cy is candidate, W, is weights candidate, W; is weights input, tanh is tanh
activation function, b is bias candidate and b; is bias input gate.

Lastly there is Output Gate. In this gate, the combined result of the previous value with the value
obtained through the sigmoid activation function will produce an output value of [32][33]. This gate used
the following equation, o; = (W, X [x¢ 4+ hy—1] + b,). In this case, o; is output gate, b, is bias output gate
and W, is weight output gate.

Just like the name, LSTM has two kinds of memory, the hidden state and the cell state, each state is
responsible for short term and long term memory respectively. Inside cell state, there are two values that are
combined. The first value is obtained from the multiplication of the value of the forget gate and the value of
the cell state. The second value is obtained from the multiplication of the input gate value and the candidate
memory cell value [32][33]. The following equation is used in this gate, C; = i X Cy_1 + iz X (jt. In this
case, C is cell state and C;_1 is cell state previously.

Finally, there is hidden layer which affects the value in the next process. The value of this layer is
obtained from the multiplication of the output value and the value of the cell state or memory cell that has
gone through the activation process in the tangent function [32][33]. We can denote the correlation with the
following simple equation, hy = hy x (Cy). In this case, h; is hidden layer.

Gated Recurrent Unit (GRU) is a variation of the RNN method which is designed to be a solution
to the Vanishing Gradient problem that occurs in the RNN method. In the GRU architecture, there are two
unit gates used, namely the Update Gate and the Reset Gate. These two unit gates are the result of the
combination of the three unit gates of the reduced LSTM. Basically, these two unit gates are vectors that
determine what kind of information will be passed as a result.

At the Update Gate is determined how much information or units previously stored to be carried

Agi, Automatic Vocal Completion for Indonesian Language Based on Recurrent Neural Network



18 IT Jou Res and Dev Vol. 9, No. 1, August 2024: 14 — 26

into the future [34]. In other words, z; = o(ziw + hy—1U, + b, ), where z; as the symbol of the Update
Gate with ¢ as the time step. Then wy is the weight symbol which will be multiplied by h;_; (final memory)
as the result of the previous time step and x; is the input for the time step being processed. Then the two
results will be added and entered into the sigmoid function (o) [34].

The Reset Gate work r; decides how much past data will be erased or overlooked. The formula for
the Reset Gate is the same as the formula for the Update Gate. The difference lies in the weight of W,., U,.,
and also the use of the gate [34]. Thus, 7y = o(zyw, + hy—1U, + b;).

In the Current Memory Content n; formula there is a multiplication between w which is the result
weight of the Reset Gate which is calculated using multiply the product of Hadamard (element-wise) with
h¢—1 and will also be multiplied by z;. Then the result will be entered into the function tanh [34]. It can be
denoted as n; = tanh(wpxy + Up(re © hi—1) + by).

The last process is Final Memory h; which is passed on to the next cell. The calculation (1 — z;)
is multiplied by h;_1 or the previous final memory and then added with the result of the Update Gate
z¢ which has been multiplied by Current Memory Content or n; [34]. It also can be denoted as h; =
(1 — Zt) ® ht_l + 2zt © ny.

2.3. Layer Connection

Two crucial connection configuration needs to be addressed in our problem, Bidirectional and Time
Distributed. The nature of our dataset is similar to the general language translation problem. The only key
difference in our study is that the sentence is converted as the token of characters instead of the token of
words. Since deciphering fully consonant texted into fully vocalized texted needs context, at least one word
before and one word after, Bidirectional connection is needed to understand the context more clearly from
two directions of reading, first to the last and last to the first.

A bidirectional Neural Network is one technique to combat vanishing gradient problems. Instead of
letting the gradient value disappear during the training in the last cells, the network is set up so that infor-
mation also flows from the last layers to the front cells. This technique is suitable for language translation
where the target language has significantly different grammatical structures from the former language. Bi-
RNN is the result of modifications to the RNN layer that is connected to the previous and next states. Here
is the Bi-RNN formula: hl(tf) = g(WOIT 4 W(j)hgj;)l + b)) and hib) = g(WOT 4 I/V(j)hgj;)1 + b9)),

h,gf ) and hgb) are

In the j layer, the forward state and backward state will be calculated. Then the results of
summed with the following formula: hg‘j ) = hif )+ hib) [35].

After that, the vector that the connection produces will be transferred into the Time Distributed
Dense layer. Time Distributed is a fully connected layer that is given a challenging default class wrapper
so that it will apply the fully connected layer at each time stage. The Time Distributed Layer is usually
used in Recurrent Neural Networks to maintain one-to-one relations on input and output [36]. Using the
Time Distributed layer will make the design and analysis for distributed optimization problems much more
complex as they change over time [37]. This study uses a Time Distributed Layer followed by LSTM to
capture sequential data by applying the duplicate layer to each data used. So using a time-distributed layer
will not increase the complexity of a model, but the data will learn through several layers and produce a
predictive result.

Lastly, we apply adam optimizer to our architecture. Adam’s optimizer is a development of the mo-
mentum optimization algorithm and the Adagrad optimization algorithm, which can increase convergence
speed in the early stages of training. Adam has the advantages of adaptive learning and relatively fast conver-
gence compared to other optimizers. Therefore, the adam optimizer is one of the optimizers that is suitable
in our case. Adam has methods such as dynamically adjusting the adaptive learning speed on each parameter
by calculating the gradient’s first and second moments of the gradient [38]. This is intended to make pa-
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rameter updates more stable and not easy to enter into local optimization. In addition, adam can also record
the average decay of the previous gradient, which is similar to momentum: m; = Sym; — 1 + (1 — 51) gy,
v = Pavy — 1+ (1 — B2)g?

Where m; is the average value of the gradient index (mean) at time t, while v; is the square of
the gradient at time t. m; and v; are considered as Os vectors when it is observed that they are biased
towards zero, especially when the gradient decay rate is small. Next is to calculate the bias update, where
my = my/1 — Bt and ¥y = v;/1 — B. Then the parameters will be updated using the formula: ;1 =
0, — 0/, Y% — e ® my [39][40].

2.4. Architecture

In this research, there 6 models that will be observed their performance when feeded with 4 different
datasets, resulting in 24 different models. The models are divided into 2 kind of RNN cells, the LSTM
based models and the GRU based models. Table 2 shows our 6 different models configuration. The value
64 represents the total count of LSTM or GRU cells employed in the model.

Table 2. The Models Configuration

Model Layer(s)
1-layer LSTM (64)
2-layer LSTM (64, 64)
3-layer LSTM (64, 64, 64)
1-layer GRU (64)
2-layer GRU (64, 64)
3-layer GRU (64, 64, 64)

Mmoo QW

Since the dataset is consisted of series of tokenized characters, the input data is a 2-dimensional
array. However since RNN received 3-dimensional data, the dataset needs to be processed with an additional
layer to convert 2-dimensional input array into 3-dimensional data.

The embedding layer is the layer that receives 2-dimensional data. The first dimension deal with
the number collection of the vectorized sentence, and the second dimension deal with the character’s token.
It works similarly with the Word2Vec [13] but in a neural network. Originally the vector-based word em-
bedding is used to tackle the similar word in terms of meaning, projecting the word into an n-dimensional
vector instead of a single value. However, this research will use this embedding layer to project characters
into the 256-dimensional vector, giving them broader context and flexibility in describing ambiguous words
through its vectorized characters. Figure 1 is the representation of the detailed model configuration. All
models then will be run on six different datasets.

The flow of data entering the models is explained as follows. First, the X sentences, composed
of only consonants, and Y sentences, composed of fully vocalized words, are tokenized based on their
characters. Then, the tokens are padded into the same-length vector based on the longest tokens sequence
inside the dataset. After that, the tokens are converted into vectors through the embedding layer. Then
the data flows into designed RNN networks. Lastly, the data will flow into the 64-Dense layer before the
predicted vocalized sentences are concluded in the last layers. The models used softmax activation on the
output layer.

3. RESULTS AND DISCUSSION

All models are observed for their performance based on their training and validation accuracy. The
models are trained within 30 epochs. During the training phase, the training and validation dataset is divided
into 90% and 10% ratios, respectively. The experiments are done using python.
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LSTM's Model GRU's Model

Input N gram Input N gram Input N gram Input N gram Input N gram Input N gram

[ Embedding Vocab+1 ] [ Embedding Vocab+1 ] [ Embedding Vocab+1 ] [ Embedding Vocab+1 } { Embedding Vocab+1 1 [ Embedding Vocab+1 }
[ LSTM 64 } [ LSTM 64 } [ LSTM 64 } [ GRU 64 } { GRU 64 1 [ GRU 64 }
[ Dense 64 ] [ LSTM 64 ] [ LSTM 64 ] [ Dense 64 } { GRU 64 } [ GRU 64 }
[ RelLU ] [ Dense 64 ] [ LSTM 64 ] [ RelLU } ( Dense 64 } [ GRU 64 }
[ Dense Vocab+1 ] [ RelLU ] [ Dense 64 } [ Dense Vocab+1 } { RelLU 1 [ Dense 64 }
[ Softmax ] { Dense Vocab+1 ] [ RelLU ] [ Softmax } [ Dense Vocab+1 } [ RelLU }
[ Softmax ] [ Dense Vocab+1 ] { Softmax } ( Dense Vocab+1 1
Softmax Softmax
(@) (b)

Figure 1. The proposed architecture of (a) LSTM and (b) GRU based models

Since too many models are being tested, the training accuracy will be shown collectively based
on their RNN cell type and the bias value. In this case, bias is defined as the difference between training
accuracy and validation accuracy. Thus, the higher the accuracy, the better the model performs. At the same
time, the lower the bias, the better the precision of the model gets.

3.1. 3-gram Dataset

Table 3 summarizes the overall models performance under 3-gram datasets. The accuracy column
indicates the highest accuracy achieved by the model. The validation accuracy column indicates the valida-
tion accuracy of the model during the training. The average bias indicates the average difference between
accuracy and validation accuracy.

Table 3. The model performance against 3-Gram dataset

Model Accuracy  Val Accuracy  Average Bias
A: LSTM (64) 96.91% 96.72% 0.067%
B: LSTM (64, 64) 97.74% 97.42% 0.168%
C: LSTM (64, 64,64)  98.11% 97.68% 0,203%
D: GRU (64) 96.68% 96.56% 0.06%
E: GRU (64, 64) 97.44% 97.2% 0.104%
F: GRU (64, 64, 64) 97.72% 97.47% 0.115%

It can be seen that the 3-layers LSTM (64, 64, 64) achieved 98.11% training accuracy. Despite the
highest accuracy among other LSTM models, this model has the highest average bias of 0.203%. On the
contrary, the 1-layer LSTM (64) model has the lowest average bias, 0.06%. However, the 1-layer LSTM
(64) model has the lowest training accuracy, which is 96.91% training accuracy. It indicates that the model
has better precision than other models. Based on the result, the most reasonable model is the 2-layer LSTM
(64, 64) model, which has a maximum accuracy of 97.74% and an average bias of 0.168%. The performance
of the LSTM models under 3-gram can be seen in Figure 2a for accuracy and in Figure 2b for bias.

The GRU-based models show similar patterns, just like the LSTM-based models. The deeper the
layer, the more accurate the model becomes. First, the 3-layers GRU (64, 64, 64) achieved 97.72% training
accuracy, the highest accuracy among GRU-based models. This model also has the highest average bias,
0.115%. Second, the 1-layer GRU (64) model has the lowest training accuracy, which is 96.86% training
accuracy, but it has the most downward average bias, 0.06%. It also indicates that the model has better
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precision than other models. Third, the most reasonable model is the 2-layers GRU (64, 64) model, which
has a maximum accuracy of 97.4% and an average bias of 0.103%. The performance of the GRU models
under 3-gram can be seen in Figure 2¢ for accuracy and in Figure 2d for bias.
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Figure 2. The overall performances for, (a) LSTM Models Accuracy, (b) LSTM Models Bias, (¢) GRU
Models Accuracy, (d) GRU Models Bias on 3-Gram Dataset

Thus, the highest accuracy is achieved by the 3-layer LSTM (64, 64, 64). The LSTM-based and
GRU-based models show similar patterns, where the deeper the layer, the more accurate the model becomes.
The GRU-based models exhibit lower average bias than the LSTM-based models.

3.2. 4-gram Dataset

The following Table 4 shows the overall performance of LSTM-based and GRU-based models in
4-gram datasets. At a glance, it can be seen that the LSTM shows similar results, just like the previous
experiment. The highest accuracy is achieved by the 3-layer LSTM (64, 64, 64), which is 97.39%. But it
doesn’t show the same pattern as GRU-based models before.

Table 4. The model performance against 4-Gram dataset

Model Accuracy  Val Accuracy  Average Bias
A: LSTM (64) 94.38% 94.22% 0.01%
B: LSTM (64, 64) 96.61% 96.15% 0.163%
C: LSTM (64, 64,64)  97.39% 96.96% 0.197%
D: GRU (64) 96.61% 96.36% 0.087%
E: GRU (64, 64) 95.88% 95.66% 0.069%
F: GRU (64, 64, 64) 93.95% 93.84% 0.01%

The deeper the LSTM-based models, the better the accuracy gets. On the contrary, in this GRU-
based models experiment, the deeper the layer, the worse the accuracy. But the GRU-based models also
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exhibit lower average bias than the LSTM-based models. The performance of the LSTM models under
4-gram can be seen in Figure 3a for accuracy and in Figure 3b for bias. Furthermore, the performance of
the GRU models under 4-gram can be seen in Figure 3¢ for accuracy and in Figure 3d for bias.
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Figure 3. The overall performances for, (a) LSTM Models Accuracy, (b) LSTM Models Bias, (¢) GRU
Models Accuracy, (d) GRU Models Bias on 4-Gram Dataset

It is interesting to note that although the LSTM-based models show similar patterns to the previous,
the GRU-based models didn’t share the same pattern in terms of accuracy. Another finding is that all models
trained under the 4-gram dataset obtained lowered maximum accuracy, 97.39%, than the 3-gram dataset,
which has higher maximum accuracy, 98.11%. This might indicate that the Indonesian language didn’t need
a too long sentence to understand the context of the sentence.

3.3. 5-gram Dataset

Table 5 shows the overall performance of LSTM-based and GRU-based models under a 5-gram
dataset. The LSTM-based models again show the same pattern, just like the previous patterns. The deeper
the layer, the more accurate the model becomes. The GRU-based models also exhibit the same pattern as
the 4-gram dataset-based model. The lower the layer, the more accurate the model becomes. However, these
GRU-based models did not share the same pattern as those trained with the 3-gram database models.

Table 5. The model performance against 5-Gram dataset

Model Accuracy  Val Accuracy  Average Bias
A: LSTM (64) 92.64% 92.37% 0.141%
B: LSTM (64, 64) 94.39% 93.84% 0.286%
C: LSTM (64, 64,64)  95.79% 94.93% 0.476%
D: GRU (64) 95.35% 95.18% 0.176%
E: GRU (64, 64) 94.21% 93.89% 0.129%
F: GRU (64, 64, 64) 91.6% 91.59% -0.003%
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There is also one consistency that can be found here. The higher n-gram, the lower the accuracy
it gets. The highest accuracy can be obtained by these models with a 5-gram dataset is 95.79%, which is
still lower than the previous a 4-gram dataset-based models. It can be seen the performance of the LSTM
models under 5-gram in Figure 4a for accuracy and Figure 4b for bias. Similarly, the performance of the
GRU models under 6-gram is illustrated in Figure 4¢ for accuracy and Figure 4d for bias.
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Figure 4. The overall performances for, (a) LSTM Models Accuracy, (b) LSTM Models Bias, (¢) GRU
Models Accuracy, (d) GRU Models Bias on 5-Gram Dataset

Another consistency is that the GRU-based models have a lower average bias than the LSTM-
based models. It seems like GRU-based models have better precision tendencies compared to LSTM-based
models. Nevertheless, still, LSTM-based models across previous models have better accuracy.

3.4. 6-gram Dataset

Lastly, the 6-gram dataset is used to train the models. Interestingly, it is also LSTM that has the same
pattern as the previous models. The LSTM model, which has the deepest model, scores the highest accuracy
among others. It also shows that the deeper the LSTM layers, the better the performance. However, the
GRU-based models show different accuracy results. Table 6 shows the overall performance of LSTM-based
and GRU-based models under a 6-gram dataset.

Table 6. The model performance against 6-Gram dataset

Model Accuracy  Val Accuracy  Average Bias
LSTM (64) 90.11% 89.93% 0.069%
LSTM (64, 64) 92.5% 91.75% 0.365%
LSTM (64, 64,64)  93.21% 92.68% 0.379%
GRU (64) 89.45% 89.36% 0.004%
GRU (64, 64) 92.89% 92.79% 0.097%
GRU (64, 64, 64) 91.6% 91.59% -0,003%
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The 2-layers GRU (64, 64) model achieved the highest accuracy among other GRU models, reaching
92.89%, and the 1-layers GRU (64) model achieved the lowest, reaching 89.45%. The GRU models did
not have the same consistency as the LSTM models. Suppose all the GRU models are being grouped all
together. The smallest layer achieves a model with the highest accuracy, and the deepest layer achieves a
model with the lowest accuracy. Besides these, the GRU-based models still have the lowest average bias.
The Figure 5a and Figure 5b illustrated the LSTM models’ performance under 6-gram, shows accuracy
and bias, respectively. Similarly, accuracy and bias for the GRU models’ performance in the 6-gram are
illustrated in Figure Sc and Figure 5d.

® acc_fgramilayerll STM A ace_Ggram2layer STH ace_Bgram 3layerL STM ™ bias_GgramilayerLSTU A bias_Ggram2layerLSTh bias_6gram3layerLSTM
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Figure 5. The overall performances for, (a) LSTM Models Accuracy, (b) LSTM Models Bias, (¢c) GRU
Models Accuracy, (d) GRU Models Bias on 6-Gram Dataset

This 6-gram dataset is the most extended dataset to train. Nevertheless, this dataset did not increase
the accuracy of the models. Instead, the lower 3-gram dataset with the deeper layers model gives the
highest accuracy among others. It might indicate that the nature of the Indonesian language itself is not
too complicated to guess with few words besides the context word.

4. CONCLUSION

This study successfully carried out the normalization of words without vowels in Indonesian into
complete sentences. The 3-layer LSTM with (64, 64, 64) filter configuration achieved the highest accuracy
when trained with the 3-gram dataset, reaching 98.11% accuracy. Although GRU-based models achieved
lower accuracy than their LSTM-based counterparts, the GRU-based models have a lower average bias. The
result suggests that the ambiguity from the non-vocalized text in the Indonesian language can be solved
easily by only seeing the context from one previous and one next word.

This research shows promosing technique to improves Indonesian text dataset preprocessing, where
the model can be used to normalized slang or shortened words inside the dataset, enhancing dataset quality
for tasks like sentiment analysis, clustering, or translation. Despite being limited to the Indonesian News
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Dataset, future work could broaden the model’s capabilities by including diverse datasets from sources like
children’s books or scientific literature. This research also opens to more promising applications in diverse
fields, such as text suggestion from abbreviation, typo correction, and lossy text compression in various
languages, where the text can be compressed by partially deleting the characters intentionally.
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