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 Reinforcement Learning (RL) is fast gaining traction as a major branch 

of machine learning, its applications have expanded well beyond its 

typical usage in games. Several subfields of reinforcement learning 

like deep reinforcement learning and multi-agent reinforcement 

learning are also expanding rapidly. This paper provides an extensive 

review on the field from the point of view of Machine Learning (ML). 

It begins by providing a historical perspective on the field then 

proceeds to lay a theoretical background on the field. It further 

discusses core reinforcement learning problems and approaches taken 

by different subfields before discussing the state of the art in the field. 

An inexhaustive list of applications of reinforcement learning is 

provided and their practicability and scalability assessed. The paper 

concludes by highlighting some open areas or issues in the field. 
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1. INTRODUCTION  

As a sub-division of Artificial Intelligence (AI), reinforcement learning has found its 

relevance in several disciplines such as Computer Science, Engineering, Mathematics, Psychology 
to mention but a few. Unlike its counterparts, Supervised Learning, and Unsupervised Learning, it 

operates by placing an agent in an environment, the agent takes an action, and then the interaction is 

translated into a reward, as well as an associated state. The primary goal of the agent is to magnify 

the reward despite the initial uncertainty of the environment. Its versatility has made it applicable in 

game theory, control systems, robotic control, multi-agent systems and statistics. One of the oldest 

and perhaps, profound, uses is in solving control system problems using the most optimal route. 

Another remarkable application is that of the AlphaZero, also referred to as the “first multi-skilled 

AI board-game champion”. Notably reinforcement learning is amongst the paradigms in AI. The 

others are Supervised and Unsupervised learning. With supervised learning, a classified and labelled 

data set is used. The model is trained using the data to predict the output for a different input. In 

supervised learning system, performance improves by increasing the number of training examples. 

Typical supervised learning problems consist of object detection, image captioning, classification, 
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regression, and labelling [1]. Though this learning type is relatively simple, it is not a perfect- fit for 

interactive environments. In such environments, learning would be more efficient if the system could 

learn from its own experience [2]. This leads to unsupervised learning. Unsupervised learning 

operates on unlabeled datasets, and it strives to find a pattern from such datasets. It aims at analyzing 

and deducing the underlying structure of the data. Unsupervised learning problems include feature 

learning, clustering, dimensionality reduction, and density approximation or estimation [1]. The third 

concept is reinforcement learning (RL). This category of learning entails the interaction of the agent 

with the environment. The agent acts on, and it receives feedback or reward. It is a trial-and-error 

method in which the agent experiences both failures and successes while trying to maximize the 

reward [1]. The unique feature has been verified to be a modern method to build a human-level agent 

[3]. Each time step, the agent perceives the current state of the environment and then takes an action. 

Every action causes the agent to transit to a new state. For each transition, there is a reward signal 

that determines the magnitude of the transition. In case of a wrong action [failure] the agent receives 

a negative transition and for a right action [success], it receives a positive transition. Ultimately, the 

agent is tasked with maximizing the cumulative reward [4].  

Alternatively, the focus of RL is to strike and find a midpoint between exploration and 

exploitation [5]. All three types of learning are encompassed under Machine Learning and Artificial 

Intelligence. RL differs from supervised learning because it requires no labelled dataset, and the 

reward feedback is less informative in RL than in supervised learning where the agent would be 

given the correct actions to take [6]. Though RL shares some common attributes with unsupervised 

learning, there are differences between them. RL focuses on maximizing the reward rather than 

finding the hidden structure [2]. Also, the feedback in RL is much more informative when compared 

with unsupervised learning, no explicit feedback on the performance can be found [7]. The advent 

of Deep Reinforcement Learning has stirred up a huge technological advancement and companies 

such as Google, Uber and Tesla are incorporating it into self-driving autonomous cars.  

This paper gives a comprehensive survey on the state of the art of reinforcement learning. It 

explores, discusses, compares, and critiques the various state of the art techniques, methods of 

reinforcement learning as well as its applications. Limitations are discussed in each case and future 

research directions are proposed. This paper serves as a good starting point for researchers looking 

to conduct research on any branch of reinforcement learning. In this regard, the remainder of the 

document is structured as follows: Section 2 talks about the contribution and related works. In Section 

3, the background to reinforcement learning is well explained. Section 4 dwells on the applications 

of RL. Section 5 presents the results and discussion, and this contribution wraps up with the 

conclusion in Section 6. 

 

2. CONTRIBUTIONS AND RELATED WORKS 

There exist several papers in the literature that have surveyed either the entire field or a 

subfield of reinforcement learning. This section discusses the contributions of those papers, their 

approach, and their shortcomings which this work aims to cover. Kaelbling et al [8] provides the first 

comprehensive survey of reinforcement learning. Their work detaily discusses some of the core 
issues in reinforcement learning like exploration and exploitation, generalization, and hierarchy, and 

dealing with hidden states. It further reviews and assesses the practicability of some implemented 
systems. While this is a detailed review, the field has evolved quite a lot since this work was 

published in 1996. In [9], Agostinelli et al briefly review RL, considering its history, the state of the 

art and place emphasis on first principles. Benjamin Retch [10] provides a survey of reinforcement 

learning, but unlike [8], the viewpoint is that of optimization and control and the focus is presenting 

its applications in continuous control. Fengji et al [11] summarize advances in model-based RL, 

presenting characteristics, advantages, and defects of each approach as well as their applications 

across several fields. Considering how wide the field of reinforcement learning is, several authors 

have decided to survey specific subfields. In [12] Arulkumaran et al, provide a brief survey on deep 

reinforcement learning. The paper reviews various value-based and policy-based methods, it covers 

the main algorithms present in deep reinforcement learning such as deep Q-networks (DQN), 
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asynchronous actor critic, and trust region policy optimization (TRPO). It details several open areas 

of research within the field as well. As this is intended to be a brief survey, it fails to mention works 

that provide contributions to the field. It also fails to provide current areas of application of deep RL. 

Furthermore, quite a lot has changed in deep RL since this paper was published in 2017. Mousavi et 

al [13] improves on [12] by focusing on current developments in deep reinforcement learning. It 

discusses some of the more frequently used architectures like recurrent neural networks (RNNs), 

convolutional neural networks (CNNs), and autoencoders.  

Just like [12] however, it is brief and leaves out several significant works and does not discuss 

applications. Yuxi Li [14] surveys recent advancements in deep reinforcement learning. It provides 

a background to machine learning, deep learning, and reinforcement learning. It further discusses 

core reinforcement learning problems like policy, reward, planning and models. It discusses 12 

applications of reinforcement learning including games, natural language processing (NLP), finance, 

text generation, industry, and a lot more. While this is the most comprehensive work on deep 

reinforcement learning to date, it fails to sufficiently discuss open issues in the field. Mohammad et 

al [15] surveyed the application of Bayesian methods in reinforcement learning. It covers extensively 
recent advances on both Bayesian methods for model-based and model-free reinforcement learning. 

In summary it provides a survey on Bayesian Reinforcement Learning algorithms, alongside their 

theoretical and empirical properties. Busoniu et al [16] is an overview of the field of approximate 

RL. It comparatively analyzes different methods and techniques for approximate RL. Multiagent 

reinforcement learning (MARL) systems are finding increasing number of applications across a wide 

variety of domains. There are a few papers in the literature dedicated to surveying this specific 

subfield of reinforcement learning. Busoniu et al [17] comprehensively surveyed the field, providing 

a detailed description of RL MARL algorithms. It also discusses some domains of application for 

MARL and provides a map of the field. A lot of significant contributions have been made in the field 

since its publication. [18] is another somewhat similar version of [17]. Hernandez-Leal et al [19] 

surveyed multi-agent deep reinforcement learning (MDRL). The work emphasizes the practical 

challenges of MDRL. One major difficulty in MARL is the coordination of multiple agents to reach 

the required goal.  

Choi et al [20] provided a survey on the different coordination strategies for multiple agents 

including cooperation and competition. The applications of reinforcement learning are indeed varied, 

and several papers have set out to survey the applications of RL in specific domains. Polydoros et al 

[22] surveyed the application of model-based reinforcement learning to robotics with an emphasis 

on algorithms and hardware. Kober et al [21] provided a general survey of the application of RL in 

robotics, considering both model-free and model-based methods. It considers the successes and 

challenges of applying RL in robotics. It also does a great job outlining open issues and possible 

research areas. In [23] Shao et al provided a survey on the application of deep reinforcement learning 

to video games. It reviews the application of RL to a variety of video games including 2D and 3D 

games. Additionally, it considers important topics to consider when designing RL systems for games 

such as: sample efficiency, exploration-exploitation, generalization and transfer, multi-agent 

learning, incomplete information, and delayed spare rewards. Mahmud et al [24] discussed the 

application of deep learning and reinforcement learning to biological data. Yu et al [25] provided a 

survey on the application of reinforcement learning in healthcare.  

Multi Agent Reinforcement Learning (MARL) which involves multiple agents performing 

similar tasks learn faster by sharing experience and exchanging communication. The ability of other 

agents to take over some of the tasks if one or more agents fail makes it robust [4]. However, existing 

MARL algorithms require some preconditions before the benefits above can be exploited [28, 29]. 

Game theory which involves the theory of learning in games [30] has been linked with MARL. 

Researchers such as Shoham et al. [31] have delved into the connection between MARL and game 

theory using some of the MARL algorithms to back up their claims. Engineering design is a highly 

iterative problem-solving process [32]. Design automation presents a solution by transferring the 

tasks from a human designer to the computer. Previous research on this topic was limited to the use 

of Bezier curves to represent designs [33]. However, Fabian Dworschak et al. presented a general 

method for design automation by applying RL in parametric Computer Aided Design (CAD) models. 
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The parametric CAD Models to depict the design as learning environment for the RL agents 

expanded the scope. RL could be used to predict designs that are manufacturable since restrictions 

can be implemented in the parameter grid. Furthermore, they showcased the concept of transfer 

learning for related design tasks in a bid to ensure automation [34]. 

Robot design is an extremely arduous and complex task considering that there are many 

parameters that could alter its final performance. Legged robots even pose a bigger challenge as 

literature on design principles is very sparse [35]. It is often unclear as to how the final values are 

determined [36]. To combat the design optimization problem, Álvaro Belmonte-Baeza, Joonho Lee 

et al. suggested a quantitative model-free approach based on Meta Reinforcement Learning. They 

introduced an adaptive RL-based locomotion controller, whose locomotion policy is conditioned on 

the design parameters such that it can optimize each design instance. The Meta RL ensures fast 

adaptation of the policy to the specific design and on application to the leg link length of four-legged 

robots, they obtained a policy that resulted in close-to-optimal locomotion control of the robot. Their 

framework provided a substantial improvement and generated lower-cost designs [35].  

Aside from research of RL in robotics and game theory, Abedali El Gourari et al. also delved 

into the implementation of Deep RL in e-learning and distance learning [26]. They adopted a 

framework for promoting learning and focused on the implementation of Deep Q-Networks to train 

the agent or a virtual teacher to do Remote Practical Work (RPW) in a short period. Then the agent 

can help improve the cognitive levels of the students by informing them of things they must do and 

things they do not need to do to understand the subject. In summary, the agent uses Deep RL to learn 

how to take the perfect actions to solve the problem in its environment. After training, the interactive 

RPW platform is provided for the student and the student is then evaluated by the virtual teacher 

[37]. 

 

Table 1. A comparison with related works 

Related works Specified 

domain 

Merits and 

Demrits 

Algorithm 

description 

Discussed 

limitations 

Future 

prospects 

Performance 

comparison 

Kaelbling et.al.[8]       

Recht et.al.[10]       

Fengji et.al.[11]       

Arulkumaran et.al.[12]       

Li et.al.[14]       

Buşoniu et.al.[16]       

Buşoniu et.al.[17]       

Choi et.al.[20]       

Kober et.al.[21]       

Shao et.al.[23]       

Mahmud et.al.[24]       

Yu et.al.[25]       

Gourari et.al.[26]       

Price et.al.[29]       

Shoham et.al.[31]       

Viquerat et.al.[33]       

Dworschak et.al.[34]       

B-Baeza et.al.[35]       

This work       

To highlight the contributions of this work, a comparison with the related works is presented in 

Table.1. In this table, the specified domain shows whether the reviewed works captured the 

application or targeted areas. Furthermore, the implications of the solution (whether positive or 
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negative) as expressed or discussed by authors are indicated by the merits and demerits. Algorithm 

description is a mark given to denote that related works presented the theoretical or mathematical 

concept behind reinforcement learning models and solutions. Moreover, if the authors mentioned 

and elaborated on the open issues and limitations with regards to their work, it is represented in the 

discussed limitations column. On the other hand, future prospects indicate if the paper detailed the 

expectations that are likely to resolve the current issues or challenges encountered. Additionally, 

there exists a final indicator to show whether the performance assessment of reinforcement learning 

methods are good, accurate, efficient, and reliable for application in real life environments based on 

distinct or unique metrics. 

 

2. RESEARCH METHOD  

The emergence of Reinforcement learning has seen its application in several areas such as 

robotics, manufacturing, communication, education, image processing, healthcare, and entertainment 

among others. In this regard, many significant gains have been made through their utilization in these 

respective areas. For instance, in image processing, reinforcement learning has positvely influenced 
the extraction of vital information from images, enhancing image quality for analysis in computer 

vision related tasks in healthcare and many more. Similarly, a notable success in reinforcement 

learning is its application in the gaming arena. That is, in learning from games played by 

professionals or specialist (Alpha Go), stochastic games, learning by self-play (Shogi and Chess) as 

well as from learning without employing hand-crafted elements or features (Atari games). In 

reference to motion and its dynamics, reinforcement learning has been employed in several control 

tasks such as balancing of a pendulum without initial knowledge of its operating dynamics, 

performing low speed hovering with a helicopter in an inverted manner and other defined maneuvers. 

It is therefore imperative to note that through reinforcement learning, solutions have been provided 

to numerous challenges in a very optimized and efficient manner. 

 

2.1.  Main concept 

As a sub-field of machine learning (ML), reinforcement learning employs software agents 

that interact with its immediate surroundings to enhance performance by achieving the most desirable 

cumulative reward. Along with supervised and unsupervised learning techniques, reinforcement 

learning (RL) is another integral machine learning paradigm that is feedback-based and with either 

positive or negative learning classification. In typical RL problems, a decision maker is made to 

operate in an environment modeled by states st ∈ S. The decision maker alternatively referred to as 

the agent can take certain operational actions or measures at ∈ A(st) as a function of the recent 

(current) state st. Following the selection of an action at time t, the agent acquires a scalar reward rt+1 

∈ R and subsequent arrives in a new state st+1 based on the recent state and chosen action. It also 

follows the policy πt strategy, at every time step. This implies a mapping from states to the likelihood 

of choosing each possible action: where π (s, a) represents the likelihood that a = at if s = st. Thus, 

the goal of reinforcement learning is to utilize the interactions that agents have with their immediate 

environment to obtain (derive) the most advantageous policy to magnify the agent’s gross reward 

received over time. 

 

2.2.  Definitions 
 

Model 

A model is the term referring to the different varying states of the environment and the 

resultant reward associated with each state. It merely makes it possible to draw conclusions and make 

predictions about the environment. Using a model is optional in reinforcement learning thus leading 

to model-based (dynamic programming) and model-free reinforcement learning. The distinction 

between the two is the use of models. In the model-based approach, the agent is enabled to construct 

a functional representation of its environment (model) from which the agent uses to plan and decide 

the next course of action. It deviates from the “trial-and-error”. The model comprises transition 

probabilities and the reward function [4, 38, 39]. Conversely, the model-free method forgoes 
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understanding the environment to make decisions but rather, the agent acts given a particular state. 

No model or planning is involved. The agent freely learns on the go and a change in the environment 

or action of the agent is only possible after exploration [40]. 

According to Sutton and Barto who defined RL as learning to behave optimally in a 

stochastic environment by performing actions and getting rewards, model-based methods depend on 

planning as their fundamental component, while model-free methods basically depend on learning 

[2]. They analogized it to the habitual and goal-oriented control of learned behaviour patterns. 

However, Sutton claimed the model-based is the next revolutionary stage of AI. It promotes safe 

exploration and effective exploration though achieving such feat is quite a formidable task [41].  
 

Return 

To achieve maximum cumulative reward in the long-term after the current time (t), with 

regards to a finite time horizon that ends at time T, the return Rt is equal to: 

 

𝑅𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + ⋯ + 𝑟𝑇 = ∑ 𝑟𝑘

𝑇

𝑘=𝑡+1

 

 

(1) 

 

In the case of an infinite time horizon, it is customary instead to use a discounted return: 

 

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ += ∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

 
 

(2) 

 

By assuming that the rewards are bounded and γ < 1, convergence is bound to occur. As a result, γ 

∈ [0, 1] is a constant. This notation is referred to as the discount factor. This discounted definition 

for the return would generally be employed in what follows. 

 

Agents 

This refers to the entity undergoing testing and training to make effective and correct 

decisions. It could be a four-legged robot being trained to move, a robot arm learning to play Chess. 

The agent plays an important role and through its perception and actions rewards are earned. The 

aim of the agent is to pick the optimal policy that maximizes the long-term reward but if on weighing 

the agent’s current performance to the optimal performance there is a lag that births the concept of 

regret [45]. Additionally, there can be a single agent or multi-agents undergoing the training. With 

the single agent, it is modelled by the Markov Decision Process (MDP) where one agent has all those 

characteristics, while in the multi-agent scenario, there is a generalization of the MDP where several 

autonomous, cooperating units share the same environment, which they identify or recognize with 

sensors and act upon with the aid of actuators [46-48]. It represents the stochastic game.  

In the stochastic game, there is a tuple , consisting of the n number 

of agents, where S is still the environment states,  is the set of actions available to the agents, 

R is the reward of the agents assumed to be bounded and  , are the probability transition 
functions. Multi-Agent systems are used in Multi-Agent Reinforcement Learning (MARL). They can 

be applied in a vast number of fields like distributed control [49], resource management [50], robotic 

teams [51], etc. [27, 52]. Apart from the robust nature, it also provides a high degree of scalability; 

new agents can be easily inserted into the system. The agents can take advantage of parallel 

computation and experience sharing, through communication [53], for higher speed [54] and better 

performance respectively [55]. Despite the huge perks associated with MARL, it is limited by the 

curse of dimensionality, stability, exploration-exploitation tradeoff and nonstationarity [1]. 

 

Environment 
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Agents are placed in a particular surrounding or space in which they have no control over 

except the actions they take in the environment. The environment consists of different states and the 

decision made determines the current state. A simple analogy is that of a robot placed in a maze, the 

robot has no sway over the obstacles, it can only solve the maze if the right series of actions are 

made. 

 

Value functions 

This is the long-term value of a state or an action. It is the predicted return over a state or 

an action making it crucial to evaluate states in S and selecting action. To obtain optimal behavior or 

policy, one would think the straightforward approach is to list all the possible polices and pick the 

policy with the highest possible value for each initial state. That approach is not realistic, hence value 

function. Value functions are calculated first, such that the optimal value V*(s), s ∈ S yields the 

highest return. The expression below represents the optimal value function [7]. 

 

Return ( ) is the long-term total discounted reward. Rewards are short-term gains. A high reward 
value from one state to another does not infer that the action made produces the greater total reward 

in the long run.  

𝐺𝑡 = ∑ 𝛾𝑘−𝑡−1𝑅𝑘

𝑇

𝑘=𝑡+1

 

 

Value functions can be categorized into state-value functions and action-value functions. State-value 

function V(s) is the expected return when starting from a state, s [2]. 

 

  
where t is the timestamp. 

Action-value function is the expected return starting from state, s, taking an action a, with 

respect to a policy π. The mathematical formula is as below: [40] 

 

  
For an optimal policy to be found, certain algorithms are based on value functions, V (s), 

which indicates how profitable it is for an agent to arrive at a given state s. This function offers, for 

every state, a numerical approximation of the potential future reward achieveable from this state, and 

is therefore followed by the agent based on the original policy π:  

 

𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠] = 𝐸 + 𝜋 [∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

] 
 

(3) 

 

where Eπ[.] indicates the expected value provided the agent follows policy π, and t is any time step. 

 

Action-Value functions 

Here, the action-value function Q is stated as the value of taking an action a in state s under 

a policy π: 

 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= 𝐸𝜋 [∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

∞

𝑘=0

] 

 

(4) 
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Optimal policy 

Formally, the policy is defined as a mapping between the state set and the action set. 𝜋: 𝑆 →
𝐴 For an agent to make an action, there is a thought process involved and that is defined by the policy. 

Each action has a probability distribution associated with it and highly rewarding actions tend to have 

a high probability. The policy determines the behavior of an agent, and it is the possible actions that 

the agent should take for every possible state, s ∈S. A policy can either be stochastic (nonzero 

probability of multiple actions selected) or deterministic (predetermined mapping of states to actions) 

[44]. This can either be a lookup- table, a function, or a search process. The core of RL is to find the 

optimal policy. 

A policy that attains the most expected reward over the long run is termed as optimal policy 

π ∗. Hence, provided its expected return is more than or equal to the expected return for all states, a 

policy π is better than or equal to a policy π*. Therefore: 

 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑉𝜋(𝑠)  ∀𝑠 ∈ 𝑆 (5) 

 

Markov Decision Processes (MDP) 

To better understand reinforcement learning, a sound knowledge of Markov Decision 

Process is crucial. The environment in which the agent is located, is in MDP form because many RL 

algorithms use the model-free techniques [42-43]. It is a mathematical framework for formulating a 

discrete-time decision making process [35]. In reinforcement learning, an MDP is expressed as a 

distinct case in which the set of states and actions of each state are finite. The Markov characteristics 

are therefore satisfied under these stated conditions: 

 

𝑃𝑟(𝑠𝑡+1 = 𝑠`|𝑠0, 𝑎0, … , 𝑠𝑡 , 𝑎𝑡) =  𝑃𝑟(𝑠𝑡+1 = 𝑠`|𝑠𝑡 , 𝑎𝑡) (6) 

 

This implies that the likelihood of arriving in state s from state s by action a is discrete of the other 

previous states or actions prior to a set time (t). Thus, successive states, actions, and rewards gathered 

from a Markov Decision Process can be denoted or represented by a decision network. Majority of 

reinforcement learning research are established on the decorum of Markov Decision Processes. 

MDPs offer basic frameworks in which to study simple algorithms and their associated features. The 

MDP is a 5-tuple in the form (S, A, P, R, γ) where S is the finite set of the States, A is the set of 

actions of the agent, P is the state in the transition probability function from a state, Si to Sj (where i 

to j is the timestep) under a particular action ai, R is the reward function determining the immediate 

reward the agent receives on transition to the next state, and γ is the discount factor which caters for 

the uncertainty of future rewards. The above terminologies will be explained below. 

• The first element S is the state space. It refers to all the possible internal states of the agent. 

Each state is just the position of the agent in the environment. 

• Next is the action space, A, which contains the actions of the agents. The action refers to the 

choice the agent makes at the current time step. 

• State transition probability function or transition probability function has two possible 

values, [0, 1]. If it is 1, this means the transition is possible from si, to sj when the agent 

performs an action ai. For a value of 0, it is not possible.  

• Lastly, R, which is the reward function whose output determines the reward associated with 

completing an action – either good or bad. Depending on the reward value, the policy is 

updated.  

In summary, at every timestep, the agent receives a state, , and under a particular action , there is 

a probability to transition to, , as determined by . The reward received is a function of 

 [4]. What characterizes a Markov Decision is that the probability of the next state is 

dependent on the present state and not on the past states, meaning the future is independent of the 
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past given the present [1]. The goal of MDP is to get the optimal policy that maximizes the utility or 

cumulative discounted reward of the agent.  

 

Exploitation and Exploration 

The major distinction between RL and Supervised Learning is the issue of exploration. Only 

by exploration can the agent better understand the environment. It is required and important for the 

agent to explore. However, the cost of exploration, but in most cases, conflicts with exploitation. 

This tradeoff presents one of the most predominant issues in RL. A classic example is the case of the 

multi-armed bandit scenario in [45]. Exploitation involves utilizing the agent’s current knowledge 

and exploitation is information-gathering actions taken to improve that knowledge. In MARL, this 

is a challenge because of multiple agents. The agents can explore independently to obtain information 

about the environment and other agents to adapt [4]. However, exploring too much can disorient the 

other agents leading to increasing in the learning complexity for the agent exploring. The eventual 

goal is to achieve safe and effective exploration while balancing exploitation [56]. 

 
 

2.3.  Algorithmic approaches 

For a typical reinforcement learning problem, the optimal policy can be computed using 

different methods or approches. Primarily, there are two methods: that is, the search in the space of 

value fuctions and the search in space of policies. The search in the space of value fuctions seeks to 

determine V∗ which denotes the optimal value function and derive by inference the optimal policy π∗ 

from V∗ to conclude. This method consists of Monte-Carlo, temporal difference, linear and dynamic 

programming methods. Conversely, policy space search keeps explicit description of policies and 

improve or update them over time to determine the optimal policy π∗. Typical techniques include 

evolutionary and policy gradient algorithms. An overview of these methods is presented in the 

following sections. 

Algorithms are finite sequences or steps used in solving a problem. RL is about achieving an 

optimal policy to inadvertently maximize the return. To do this, there are various methods, each with 

their strengths and weaknesses. This section will touch on the famous Q-learning, SARSA, Monte 

Carlo and Temporal Difference. 

 

Linear programming 

To find the optimal value function in reference to linear programming problems, V which 

represents the value function is treated as a cost function. Afterwards, a measure to minimize the cost 

from each starting state s is adopted. In this case, it is achieved by inverting the sign of the rewards. 

The cost function is noted by g(st) = rt + 1. Hence, the need to minimize: 

 

𝐽𝜋(𝑠) = 𝐸𝜋 [∑ 𝛾𝑘𝑔𝜋(𝑠𝑘)|𝑠0 = 𝑠

∞

𝑘=0

] 
 

(7) 

 

To carry out the minimization, it is important to define the optimal Bellman operator T: 

 
(𝑇𝐽)(𝑠) = min (𝑔𝜋(𝑠) + 𝛾𝑃𝜋(𝑠)𝐽 (8) 

 

here, J denotes a vector of states, Pπ represents the transition matrix with the (s, s) entry depicting the 

probability of arriving at s from s under policy π, and the minimization is performed component-

wise. Therefore, the solution that achieves minimization of the cost should verify the Bellman 

equation: 

 

𝐽(𝑠) = (𝑇𝐽)(𝑠) (9) 

 

It can be determined by computing the linear programming optimization (for instance, employing 
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the simplex algorithm): 

 

𝑚𝑖𝑛𝐽    𝜇𝑇𝐽 

                                            s.t.     TJ ≥ 𝐽 

 

(10) 

 

where µ denotes a vector of positive weights, referred to as the state-relevance weights. Theoretically, 

linear programming presents the only known algorithm capable of solving MDPs in polynomial time, 

even though their approaches to reinforcement learning problems generally do not thrive or perform 

well in practice. Particularly, the major problem with regards to linear programming approaches is 

that the space and time complexities can be immensely high. 

 

Dynamic programming 

The simplest or effortless method to address a reinforcement learning problem is by 

employing dynamic programming algorithms. Nonetheless, this method needs a detailed 

understanding of the model under consideration and is limited by the computational cost. The concept 

behind the dynamic programming formulation of reinforcement learning is to select a policy, 

approximate its cost value function V (Algorithm 1), derive from V (Algorithm 2) a new policy, and 

iterate this very process until a suitable policy is found (Algorithm 3). This technique is mostly 

referred to as policy iteration. This is because the policy is strictly improved in each step, and the 

algorithm is certainly guaranteed to converge with the optimal policy. In relation to computational 

convenience, one can opt to terminate or halt the policy evaluation step when the change in the value 

function is very minimal (between two iterations), as performed below with the threshold. 
 

Q-Learning 

Q-learning was introduced by Chris Watkins in 1989 in his Ph. D thesis [39]. The idea behind 

Q-learning which makes it a simple reinforcement algorithm is that it stores data in tables. It is a 

model-free RL method that learns long-term optimal behavior by finding mappings from state-action 

pairs to values. Those values, also known as Q-values, are calculated from the reward function. The 

Q-value obtained can help in improving the estimated solution [40].  

 

∆𝑄(𝑠𝑡 , 𝑎𝑡) =  𝛼𝛿 =  𝛼( 𝑅𝑡 + 𝛾𝑄(𝑠𝑡+1,   𝑎) − 𝑄(𝑠𝑡 ,   𝑎𝑡) ) (11) 

 

This refers to the expected discounted reinforcement of taking an action in state and refers 

to the learning rate and temporal difference error. Q-learning is an off-policy, that is, it evaluates the 

target policy while following a different policy (behavior policy). To find the optimal action value 

function, a greedy approach is used. The Q-table is initialized. The agent then performs an action. 

On completion, a reward is obtained and used to update the Q-table using the formula below.  

 

𝑄𝑛𝑒𝑤(𝑠𝑡  , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼𝛿 (12) 

 

The result is to obtain Q-values that converge to the optimal values, and the greedy policy 

applied by the agent should converge at the optimal policy as the learning rate improves. However, 

its weakness is that, as the state space gradually increases, defining a Q-table would be an arduous 

task. Deep Q-Network (DQN) presents a solution by using neural networks with Q-learning to derive 

approximate Q-values in the same fashion as the standard Q-learning.  

 

SARSA 

This algorithm is a variation of the Q-learning technique which stands for State Action 

Reward State Action. Unlike Q-learning, it is an on-policy method, meaning that the target policy is 

the same as the behavior policy; the agent uses a single policy. Off policy methods tend to produce 

better policies than on policy but as the environment complexity increases, it experiences scalability 
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concerns [2]. Also, on-policy methods have better performance. SARSA, initially called Modified 

Connectionist Q-Learning (MCQ-L), was introduced by Rummery and Niranjan [41].  

The concept is simple. The updated Q-value depends on the current state, current action, 

reward received, the next state, and the next action.  

 

 

 

 

Monte Carlo and Temporal Difference 

With Monte Carlo (MC) method, the agent learns directly from the episodes. An episode is 

the length of a simulated learning process starting at a selected state and it ends at a terminal state. It 

is also a model-free approach. The rewards obtained during the episode are sampled and the average 

is taken to give the MC return. Given ample time, MC provides a precise estimate of the optimal 

policy. However, MC has some limitations including that it only works in episodic problems and that 

it can only be applied in small, finite MDPs because of the possibility of delay when processing a 
suboptimal policy. 

Temporal Difference (TD) does not wait for the outcome of each episode but learns from 

incomplete episodes. It utilizes sampling, as well as a form of bootstrapping. Bootstrapping, in the 

sense that, the returns are adjusted to be more precise before the episodes end. TD solves majority of 

the limitations attached to MC. It also has the value that lies between 0 and 1. To get the best of both 

MC and TD, they can be altered [60]. 

 

 

2.4.  Performance metrics 

To assess the reliability of RL algorithms, research by [61] proposed a standardized measure 

of performance. They suggested 7 metrics to provide reproducibility or stability both during training 

and rollout. These metrics catered for both measures of variability, dispersion, and risk. 

1. Dispersion across Time (DT)  

This metric occurs during training. The algorithm must display smooth monotonic 

improvement rather than noisy fluctuations across time. In a bid to ensure that short-term 

changes should be emphasized and not long-term trends (detrending). 

2. Short-term Risk across Time (SRT) 

The most extreme short-term drop over time is calculated to determine the worst-case drop 

in performance during training. Higher drop indicates an unstable algorithm. 

3. Long-term Risk across Time (LRT) 

This determines if an algorithm has the potential to lose performance relative to its peak. It 

measures unusually large drops that occur over longer timescales.  

4. Dispersion across Runs (DR) 

RL algorithms should have reproducible performance across multiple training runs. Previous 

research has discussed this metric [62-64]. Inter Quartile Range (IQR) or variance or 

standard deviation can be calculated to ensure that the algorithm remains consistent. 

5. Risk across Runs (RR) 

Measuring this helps give the anticipated results of the bad runs. It is applied to the results 

of the entire training runs. 

6. Dispersion across Fixed Policy Rollouts (DF) 

Fixed policy is obtained after training. It determines the variability in results when the same 

policy is rolled out multiple times.  

 

7. Risk across Fixed Policy Rollouts (RF) 

RF shows the expected loss in the worst-case scenario when the same policy is applied on 

rollout performances.  

The above-mentioned metrics reveal the strengths and weaknesses of an algorithm. Other 

performance metrics to consider are win rate or success rate, median performance, cumulative reward 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) =  𝛼( 𝑅𝑡 + 𝑄(𝑠𝑡+1,   𝑎𝑡+1) − 𝑄(𝑠𝑡 ,   𝑎𝑡) ) (13) 
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over time, performance percentile, regret, time to converge, episode length [65]. Apart from the 

reliability, another important aspect to consider is the stability of the learning process by the agent. 

Some metrics to help to evaluate include the statistical variance of the cumulative reward, sensitivity 

to initialization and sensitivity to noise. 

Abdelali El Gourari et al. conducted research into the use of Deep Reinforcement Learning 

in E-learning and Distance Learning. It entails an agent aiding, guiding, and interacting with the 

student in their remote practical work. Though RL has achieved great feats in relation with decision 

making and complex problem solving, however the algorithms used perform better with good data. 

For this reason, they used Deep Q-Networks (DQN) which is a union of deep learning and RL. DQN 

uses neural networks to approximate the Q-value. After training the model thoroughly, the results 

were promising and eventually it yielded a 94% accuracy. A similar work by El Fouki et al [66] 

presented an accuracy of 99% using the same DQN algorithm. Agrebi et. al [67] obtained 48% 

accuracy with DQN and lastly Shahbazi and Byun [68] used Double Deep Q-Network which 

produced 21.46% accuracy [26]. In Robotics, Alvaro et al. implemented Meta RL for the optimal 

design of legged robots. Meta RL was used to ensure fast adaptation to the policy for a specific design 

during optimization. The meta-policy used enabled quick adaptation and an optimized design in 

about 1.4 h after 72 hours of training [35]. 

 

2.5.  Reeinforcement learning applications 

It goes without saying that the versatility and the prowess of RL has made it applicable in 

diverse fields of humanity ranging from psychology to medicine. RL is employed by tech giants like 

Google, Uber, and Tesla in autonomous driving (self-driving cars). Other applications include route 

optimization, trading and finance, healthcare, intelligent transportation systems, marketing, and 

games.  

 

Robotics 

RL has been used to train robots to perform a variety of tasks such as navigation, performing 

surgeries, grasping objects and so on. It has found its way from even the design up to the control of 

robots. Alvaro Belmonte-Baeza et al delved into obtaining the optimal design of legged robots. Robot 

design is a complicated and intricate process that depends on several parameters. [69] describes such 

parameters like gear ratio, limb lengths and so on. What makes the design process cumbersome is 

because of the huge involvement of human intellect in the design. The ideal way of countering this 

baffling situation is to incorporate computational design methods which would thus optimize the 

design parameters. However, current designs are rigid; hence not flexible to present a more holistic 

solution. The panacea suggested in their research was to use meta-RL to develop a locomotion policy 

which quickly adapts to different designs [70]. Such a policy would provide an unprecedented 

solution hinged on versatility of robotic designs [35]. Another interesting application is the work of 

Scheal and Atkeson. They constructed a two-armed robot that juggles a devil-stick after hundreds of 

attempts. The policy used by the robot was continually improved using a form of dynamic 

programming. [4, 61-63]. Mahedevan and Connell designed a mobile robot to perform the task of 
box-pushing, which happens to be a tedious task for robots to perform. With the use of Q-learning 

(an RL algorithm) and some clustering techniques, the robot performed quite competitively with a 
robot pre-programmed with a human solution. [4, 74]. 

 

Autonomous driving 

With the advent of AI (Deep Learning), autonomous systems such as self-driving cars or 

drones have been brought to light. Such systems can attain an impressive level of awareness using 

Deep Learning, but they still need to optimize the decisions made to ensure ultimate performance 

and this is what RL does. In reference to autonomous driving, this is essentially a multi-agent setting 

whereby the host vehicle applies complex negotiation skills by taking left and right turns whiles 

moving ahead in a nebulous and unorganized urban road. The two major challenges with RL for 

Autonomous Driving are that of the unpredictability of other drivers in traffic and the functional 
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safety of the driving policy (the long-term driving strategy of the car) [75]. Deep Reinforcement 

Learning has been applied in autonomous systems. RL enables the systems to learn from the data 

obtained from the environment to make the correct decision. RL algorithms are used for the decision 

making and maneuver execution systems like lane change and keeping [76-81], overtaking 

maneuvers [82], intersection and roundabout handling [83-84]. According to [76], there are two 

crucial components of autonomous driving systems - planning and control systems. The planning 

systems predict the path the self-driving car should take while the control systems are responsible 

for low-level actions like controlling steering angles, throttle, and break. 

Paolo Maramotti et al. researched in developing a system that unifies both components into 

a single module using the delayed version of the Asynchronous Advantage Actor Critic (A3C) 

algorithm [85-87]. They pre-trained the model using Imitation Learning (IL) to resolve the issue of 

requiring large number of episodes for training. At the end of both simulation and real-world testing 

(using deep_response module) in obstacle-free environments and low-traffic neighborhood 

respectively, the agents performed well. The planner developed was able to predict acceleration and 

steering angle every 100ms [75]. Though the experiment was limited by the size of visual inputs, the 
simulated agents were able to evolve conveniently. 
 

Trading and finance 

Another important and timely application of RL is in the trading and finance industry. Here 

agents are trained to automate trading by incorporating both AI and RL [70]. The process of trading 

has been parted into market condition summarization and optimal action execution [89]. What makes 

it exceptionally challenging is the dynamic decision making based on a set of frequently changing 

factors. [89] investigated the use of RL and DL in a complex neural network. The DL senses trends 

and changes in the market conditions while the RL ultimately makes the decisions to cumulate the 

rewards. The model was tested on real-world financial data, and it yielded a high level of accuracy. 

Reinforcement learning has been adopted to provide solutions to several financial issues such as 

investment and portfolio allocation, hedging and pricing contingent claims, market making, asset 

liability management, buying and selling a portfolio of securities subject to transaction costs, and 

optimization of tax consequences [90]. The assumptions made in the classical approaches are avoided 

in RL because it learns to optimize the gain regardless of the cost function provided. Hence, making 

it potent in financial applications.  

FinRL, an open-source framework, has been developed as a massive aid to traders in 

quantitative finance. It implements DRL (Deep Reinforcement Learning) algorithms to simulate a 

wide array of markets as well as trading constraints to decide where to trade, at what price and what 

quantity [91]. DRL addresses the dynamic decision-making problems by offering portfolio 

scalability and market model independence [92-96]. This gives it a competitive edge over human 

traders [97-98]. Due to the versatility and simplicity of FinRL, it can be applied in stock trading [93], 

portfolio allocation and cryptocurrencies trading [99]. It comprises of three layers, application layer, 

agent layer and environment layer. All these layers are fully customizable. In summary, FinRL aids 

in developing a DRL trading strategy by overcoming the error-prone programming and strenuous 

debugging phase.  

 

Games 

This is without doubt the most common application of RL. Games like checkers [100], tic-

tac-toe [101], backgammon [102], Go [103] consists of a series of alternating moves, thus applying 

RL is not an improbable task [104]. Thanks to RL, computers have surpassed human levels of 

performance in Chess, Checkers, Othello, Backgammon, Scrabble and so on. To achieve this, a 

straightforward strategy is applied. [105] breaks the process in three-folds. Though the above-

mentioned games differ from each other, the goal is to first analyze the positions. In Chess, the pawn 

structure, King safety is evaluated [106]. For Checkers, materials and degrees of mobility are 

assessed [107]. As for Scrabble, the single, duplicate, and triplicate letters are analyzed [108]. After 

analyzing the positions, the agents are trained using TD-learning and self-play to fine-tune their 
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performance. Finally, a search algorithm is applied such as Minmax in the case of Chess, Checkers 

and Othello or Monte-Carlo for Scrabble [108]. 

[105] delved into how RL can be applied to the game of Go which seems to be a challenging 

problem for most computer programs to master [109]. However, DeepMind were able to succeed in 

training AlphaGo program using RL to defeat the Go’s world champion, Lee Sedol. Another notable 

achievement is AlphaZero that mastered both Chess, Shogi and Go within 24 hours of self-play by 

reusing the same hyperparameters for the three games [110]. Games are a perfect application for RL 

because the agent can explore its virtual environment at an affordable cost. 

 

2.6.  Route optimization and path planning 

The process of ascertaining the most cost-efficient route is widely referred to as Route 

Optimization. It is more than just identifying the shortest path between two points as there are many 

factors and complexities to consider. Autonomous and semi-autonomous systems like unmanned 

ships make use of route optimization and path planning for maritime transportation, reconnaissance, 

and intelligence training [111]. Unmanned ships face unique problems due to the degree of harshness 

of the environment. Strong waves, current surges and so on can affect their navigation capabilities 

[112-113]. [111] probes into the local path planning of mobile unmanned ships to ensure optimal 

paths of the unmanned ships using Deep Reinforcement Learning. Initially, unmanned ships have no 

knowledge of their environment during the exploration. Thus, they are prone to the old-fashioned 

exploration vs exploitation dilemma. 

Di Wi et al. used the path corner waiting for optimization to shorten the total travel time of 

the unmanned ship crossing a path. The unmanned boat used the deep policy gradient methods to 

optimize the policy and improve the reward function. The training sessions were set to 5000 [114-

115]. It resets to a new one when the boat collides with an obstacle. After 1000 sessions, the success 

rate increased and so the average cumulative reward increased. [106] combined two RL algorithms, 

Q-Learning and SARSA to compare and find the optimal path for mobile robots. The algorithms 

were tweaked to make learning faster. Globally Guided Reinforcement Learning (G2RL) was 

employed in [117] for large dynamic environments, where the obstacles move. The mobile robots 

used G2RL, a hierarchical path planning approach, to navigate the environment. The experiment also 

was conducted on multi-robot path planning which yielded a successful result [118]. 

 

3. RESULTS AND ANALYSIS  

RL has a wide array of uses both unexplored and explored. Though some challenging 

problems have been solved, some questions are still unanswered. Discerning the appropriate RL 

algorithm to apply can be quite challenging. They all have their respective strengths and weaknesses. 

Some give improved performances over others depending on the applications. Alvaro et al, in the 

field of robotics, incorporated Meta-RL in the design optimization of legged robots. The outcome 

was a flexible, dynamic and an optimized design that could adapt to changes in the design instance 

– including unexpected changes. The framework was lightweight and low-cost compared to other 

frameworks and the nominal designs. The catch, however, was the realistic cost functions of the 
framework as they could not account for the inner workings of the system such as the power 

consumption and transmission losses [43]. 
[4] researched into the benefits of MARL over single agent reinforcement learning. 

Theoretically, MARL poses a lot of prospects because it involves multiple agents coalescing together 

to solve a problem by learning from each other. Practically, MARL is applied to small problems due 

to concerns of scalability. Only a subset of MARL algorithms can perform considerably with limited 

or incomplete knowledge. However, with further research, challenging realistic world problems can 

be solved using MARL. 

Deep Reinforcement Learning has proved its relevance in diverse applications of RL. It is a 

blend of Deep Learning and Reinforcement Learning. The DQN algorithm, a model free RL 

algorithm, links deep neural networks and RL. Google’s DeepMind made use of it to create AlphaGo, 

[119] applied it in stock market predictions and self-driving cars implement it in their operations. 
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Ergo, [26, 66-68] exploited DQN in their research into using RL in e-learning and distance learning. 

[77] compared DQN to other algorithms such as LinUCB, HLinUCB, W&D. DQN had the highest 

accuracy of 48%. Table 2 shows the various accuracy of different researchers using DQN or DDQN 

algorithms. 

 

Table 2. The Performance of various algorithms 

Researchers Algorithms Accuracy 

Abdelali El Gourari et al. 

[26] 

DQN 94% 

El Fouki et al. [48] DQN 99% 

Agrebi et al. [49] DQN 48% 

Shahbazi and Byun [50] DDQN 21.46% 

 

In view of this, the complex problems across different domains require very impactful solutions that 

further enhance or improve the capability, reliability, efficiency, and applicability of reinforcement 

learning. Thus, a concise description of the prevalent areas in RL is provided in Table 3. 

Table 3. Recent trends in reinforcemment learning 

Scope Descirption 

Deep Reinforcement 

Learning Balhara 

et.al.[120] 

This allows for the combination of deep neural networks with RL 

algorithms to harness their combined potential. Hence, this facilitates 

a more complex but scalable learning in high dimensional spaces with 

technques such as deep deterministic policy gradient (DDPG), DQN, 

proximal policy optimization (PPO) and DDQN. Thus, neural 

networks are currently employed in the extraction of high 

dimensional observation features, estimating Q values of states, and 

increasing robustness in deep reinforcement learning models. 

Multi-Agent 

Reinforcement Learning 

Li et.al.[121] 

MARL focuses on systems where many agents interact, learn, 

collaborate, and compete effectively. Thus, current methods are 

exploring the decentralized approach for agents operating in complex 

and adverse environments while ensuring scalability. Improvements 

are made equally to algorithms whiles maintaining the conventional 

network structures and eliminating centralization. In this manner, 

coordination between multiple agents is enhanced. 

Transfer learning and 

Meta-Learning 

Upadhyay et.al.[122] 

In the quest to increase reliability, RL models must learn, and 

leverage knowledge or experience gained in one environment to 

accelerate execution of tasks in similar environments. Since the 

different learning paradigms individually have merits and demerits, a 

hypothesized merging of transfer, meta and multi-task learning are 
under consideration to create generic learning networks in RL. 

Hence, model adaptability is a key area making remarkable strides  

Sample Efficiency and 
Exploration Strategies 

Yang et.al.[123] 

This involves improving RL algorithms to depend less on many 
interactions with the environment to learn effectively whiles ensuring 

maximum efficiency. In this regard, curiosity-driven, meta-

explorations and episodic memory modules among other techniques 

have been developed to improve sample efficient reinforcement 

learning architectures. Based on this, significant gains have been 

made with the incorporation of episodic thoughts into other vital DRL 

modules such as loss function and experience relpay. 

Safety Reinforcement 

Learning 

Jeong et.al.[124] 

This entails the continuous process of guaranteed operation of RL 

agents within predefined safety boundaries to avoid undesirable 

results. Thus, methods for learning policies that reduce the chances 
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of unsafe or destructive actions are increasingly becoming extremely 

essential in areas like robotics, umanned driving and the financial 

market. A typical case is the development of the novel safety asset 

allocation reinforment learning (AARL) framework. This operates by 

combining multiple protective dynamic asset allocation strategies 

(PDAS) to reduce risks via RL. 

 

4. OPEN ISSUES AND LIMITATIONS 

The challeneges or limitations of RL, although undesired, has opened numerous possibilities of 

solutions proposed to address them. Inspite of the novel architectures, algorithms, reward structures 

and exploring hybrid techniques, there exist some key areas or aspects that still require immense 

attention to tackle the limitations. The current limitations in the field of RL are as follows: 

Sample efficieny challenges 

To effectively learn optimal or near-optimal policies and perform well, RL agents often require 

a substantial number of interactions with the environment. This is computationally expensive to 

realize thus limiting its applicability in real-world scenarios where data might be scarce and capital 

intensive to acquire [125]. Practically, sample efficiency challenges are linked to exploration and 

exploration where balacing trade-off without wasting interactions on suboptimal actions are difficult 

to achieve. Additionally, the high-dimensional state spaces, sparse rewards and sample complexity 

increases the challenge of finding the optimal strategy, receiving feedback results, and achieving 

convergence.  

 

Generalization and TransferLearning issues 

Generalizing learned policies to new, unseen environments or tasks remains a huge problem. 

Evidently, RL models often struggle to transfer knowledge efficiently across different domains or 

adapt to changes in the environment. Furthermore, for RL agents that employ functional 

approximation such as neural networks to generalize, it is difficult to ensure that the approximations 

generalize well across several states without either overfitting or underfitting [126]. Moreover, 

catastrophic forgetting exists where there are no considerations for well established techniques for 

continuous learning and experience replay. 

 

Safety, Stability and Ethical concerns 

Ensuring safety and ethical behaviour of RL agents in complex, real-world environments is 

critical. However, RL algorithms may learn behaviours that are unsafe or undersirable and hence 

make it essential to develop methods to enforce safety constraints and ethical behaviours related to 

biases and fairness. In adversarial environments, RL agents are vulnerable to manipulation and 

exploitations by adversaries leading to unsafe sates. Convergence to optimal policies has also been a 

struggle for many RL algorithms resulting in erratic and instability in performance or behaviours 

[127]. More so, due to the lack of interpretability in RL models, explaining its decision-making 

processes are laborious. This raises ethical concerns with regards to societal impact when deployed. 

 

Exploration and Exploitation Tradeoff 

Balancing exploration, which involves trying new actions to discover better strategies with 

exploitation which leverages known strategies for immediate reward, is crucial. Many RL algorithms 

are faced with the challenge of efficiently exploring the environment while maximizing rewards, 

especially in complex environments having sparse rewards. Thus, more advanced exploration 

techniques are needed for this effect [128, 129]. Additionally, exploring can be risky or less 

rewarding in the short term, especially in situations whereby the actions chosen by the RL agent does 

not promptly show or yield high rewards. On the other hand, using exploitation in the short term 

although reliable may result in RL agents missing potentially superior actions or strategies. Hence, 

finding the right balance via trade-off can prove difficult. 
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Sample Complexity in High Dimensional Spaces: 

RL algorithms encounter stiff difficulties in high-dimensional state or action spaces where 

exploration becomes more problematic, and learning can be ineffective because of the curse of 

dimensionality. Others work in the bid to maintain low sample complexity experience challenges 

with achieving high predictive power even with model-based methods [130]. The significant increase 

in sample complexity when dealing with high dimensional action spaces offers huge restrictions to 

the RL agent with regards to exploration. Thus, with the lack of coverage across the states, effective 

and comprehensive learning is impractical to realize in such cases. 

 

 

5. CONCLUSION  

This paper sought to provide a solid basis to reinforcement learning by highlighting the various 

building blocks that compose it. It discusses the various types of RL and how they have been applied 

in different fields of humanity. We aimed at revisiting the roots of RL, its status, and future prospects. 
To advance the prowess of RL, the major limitation, computational capability must be addressed. A 

tremendous boost in computational power leads to increased throughputs. More efficient algorithms 

should also be developed. Further research in RL should be centered on unlocking the full potential 

of RL to make great strides in decision making and tackle complicated tasks. 
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