
IT Journal Research and Development (ITJRD) 

Vol.8, No.2, March 2024, E-ISSN : 2528-4053 | P-ISSN : 2528-4061 

DOI : 10.25299/itjrd.2024.13251      143

  

Journal homepage: http://journal.uir.ac.id/index/php/ITJRD 

Identification of Risk Factors in the Software Design 

Stage Using the C4.5 Algorithm 
 

 

M. Akiyasul Azkiya1, Deva Sindi Maulita2, Jumanto3 

Departement of Computer Science, Universitas Negeri Semarang1,2,3  

akiyasulazk@students.unnes.ac.id1, devasm145@students.unnes.ac.id2, jumanto@mail.unnes.ac.id3 
 

Article Info  ABSTRACT 

Article history: 

Received Jun 14, 2023 

Revised Aug 8, 2023 

Accepted Feb 15, 2024 

 

 A strong design phase is necessary for good software. However, design 

errors in software can cause serious issues with its creation and use. 

Therefore, the goal of this study is to find risk variables that could have an 

early impact on software development. In this study, a machine learning 

technique called technique C4.5 is employed to create decision tree models. 

100 respondents with software design experience participated in the online 

surveys and questionnaires that collected the data for this study in 2022. The 

C4.5 Algorithm was used in this study to analyze the data and determine the 

risk variables that affect the success of software design. The study's findings 

show that the C4.5 Algorithm-based model has a high level of accuracy 

(93.33%), which means that the data can offer crucial insights into 

understanding potential risks that may arise during the software design stage, 

enabling software developers to take the necessary precautions to lessen or 

eliminate these risks. In order to enhance the caliber and effectiveness of 

software design, this research is anticipated to provide a significant 

contribution to practitioners and academics in the field of software 

development. 

Keyword: 

Risk Factors 

Software Design 

Data Analysis 

Algorithm C4.5 

Data Mining 

© This work is licensed under a Creative Commons Attribution-ShareAlike 

4.0 International License. 

Corresponding Author: 

M. Akiyasul Azkiya 

Department of Computer Science 

Universitas Negeri Semarang 

Building D, Sekaran, Gunung Pati, Semarang City, Central Java 50229, Indonesia 

Email: akiyasulazk@students.unnes.ac.id 

 

 

1. INTRODUCTION 

One of the crucial phases in the development of software is software design. Methodologies for 

software development can be used on a variety of tasks, both straightforward and sophisticated. Reduce the 

likelihood of project failure is one of the objectives [1]. The success of the project and the level of user 

satisfaction are initially determined by this stage. It is necessary to distinguish between the quality of a 

software product and the quality of the development process when defining software quality [2]. Software 

is created to satisfy the unique requirements of the organization, to comprehend user requirements, and for 

individual use. Creating a workable design concept is the hardest task to accomplish in the early stages of 

design [3]. To effectively elicit user requirements in interactive device development, new methodologies, 

tools, and practices are needed [4]. Increasing the level of satisfaction with the defined demands is essential 

for a project's success through requirements engineering. The degree to which the system or product being 

built satisfies the demands and expectations of stakeholders is referred to as meeting these needs [5]. Guide 

architecture can assist development teams in large-scale software development projects in providing 

management with methodological advice and providing software with a greater level of abstraction [6]. To 



        IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

144 

help software engineers overcome risks and lessen their negative effects, it is crucial to identify risk factors 

throughout the program design stage. The use of software measurement techniques may enhance software 

engineering process management, decrease necessary time and costs, and result in higher-quality software 

[7]. Furthermore, the appropriate prevention or mitigation can be carried out to lower the chance of failure 

and enhance product quality by identifying risk factors at the software design stage. 

There have been various conversations about risk management in distributed software development in 

earlier research [8]. Prior research on the C4.5 technique covered attention-based lane shifts and a highway 

collision risk prediction model [9]. There has also been prior research on software risk, specifically a 

software vulnerability management methodology to reduce system risk and attack surface [10]. The 

approach and process of software engineering in blockchain-oriented software development are also 

covered in later studies [11]. The design of software systems, algorithms, and midstream implementation 

as downstream prerequisites will all be covered in later study by experts in the field of software 

development. They will also talk about product requirements and Innovative Analysis Ready Data (ARD) 

methods [12]. 

The complexity of the project and the hazards involved in software development are the issues that 
software developers must deal with. Project size, technology employed, functional and non-functional 

needs, and other elements can all influence how difficult a project is. Technical risks, project management 

risks, financial risks, and other risks are all possible when developing software. These risks, which include 

delayed project completion, poor product quality, and higher project expenses, may affect the success of 

the project. An essential component of a software project's success is accurately estimating the effort and 

expense involved [13]. To maximize the success of a software development project, it is crucial to undertake 

a risk analysis. This is since there are still numerous project management approaches that require more 

research [14]. Users' health may be in danger if there is software damage or failure on the gadget [15]. 

Finding potential risk factors is one technique to mitigate risk during the software design phase. Developers 

can create more effective risk management techniques by identifying risk factors. However, the method 

utilized to identify risk factors in projects involving software is still insufficient for dealing with the 

complexity and diversity of risk variables. 

The C4.5 algorithm, a machine learning algorithm used to create decision trees that may be used for 

classification and prediction, is one method that can be used to identify risk variables. The fundamental 

idea is to gather data and transform it into a decision tree by using the rules required to produce the desired 

outcome [16]. Compared to other ways, this one can help developers more accurately detect risk variables. 

However, it is still uncommon to employ the C4.5 method to identify risk concerns during the software 

design phase. 

In general, prior research did not verify and evaluate the methodologies used, focusing more on the 

explanation of the theory and fundamental ideas about the detection of risk factors at the software design 

stage. The C4.5 method is tested and evaluated more in this study to detect risk concerns at the software 

design stage. The usage of the C4.5 method, which is uncommonly employed in the context of identifying 

risk factors during the software design stage, makes this research unusual as well. 

It is anticipated that this research will aid in the creation of software that is more successful and 

efficient. Additionally, this research can assist software developers in reducing risk and raising the caliber 

of the program they produce. It is envisaged that the C4.5 algorithm would make it simpler for developers 

to establish more effective and efficient risk management methods by identifying risk concerns at the 

software design stage. As a result, the findings of this study can have a big impact on the growth of the 

software business as well as software developers. 

 

 

2. RESEARCH METHOD 

The classification of elements at the risk stage of software design using the C45 method is a key 

objective of this study. Problem finding, the first phase of this research, focuses on the difficulties 

experienced by software developers during the design phase. This research was also supported by a review 

of pertinent literature to get a deeper understanding of this problem, which strengthened the research 

foundation based on earlier investigations. 



IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152  

 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

145 

Additionally, this project involves the supervision of 100 software developers who are dispersed across 

4 continents. India, the United Arab Emirates, Canada, Germany, the United States, Singapore, and other 

nations participated in the study. To assure the accuracy and authenticity of the data, a crucial pre-

processing stage is necessary before the data can be analyzed using the C4.5 algorithm. The C4.5 method, 

one of the most widely used and successful algorithms for classifying data, will next be used to handle the 

processed data. 

To better understand the risk variables at the software design stage, the outcomes of the data processing 

stage using the C4.5 algorithm will be carefully assessed. The review will include a thorough analysis of 

the collected data, which will give software developers and other stakeholders important new information. 

There are various steps that must be taken to accomplish this goal, and each one is thoroughly outlined in 

Figure 1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research Stage 

 

2.1.  Problem Identification Stage 

We conducted extensive data analysis on datasets linked to new risk factors in software development 

that were downloaded from the kaggle.com platform at this early stage. The dataset contains a variety of 

issues that are frequently encountered during the software design phase, including issues with requirements 

documents (RD), incorrect architecture designs (AD), programming languages (PL), physical model 

activities (PM), problems with design verification (VD), issues with defining design activities (SD), and 

issues with properly documenting design activities (DD).The dataset is then statistically analyzed to 

determine the degree to which these risk factors are present and have an impact on software development. 

We can see patterns and trends in the analysis that correspond to each risk factor. For instance, we 

discovered that problems with requirements documents (RDs) were one of the most prevalent risk factors, 

indicating that shortcomings or inaccuracies in requirements papers could result in mistakes throughout the 

software design stage. Additionally, we discovered that incorrect architectural design (AD) issues and 

programming language (PL) issues both significantly affect risks during the software design stage.  

We subsequently analyzed the dataset after selecting the most significant risk indicators to determine 

how these risk factors related to other dataset characteristics including the geographic location of software 

developers, their expertise, and the size of the project teams. This study aids in the discovery of distinctive 

patterns and distinctive traits that could affect risk factors during the software design phase. We can create 

more potent plans to lower risk and raise the caliber of software design if we have a deeper understanding 

of risk variables and how they relate to other aspects. 

 

2.2.  Literature Study, Prior Research, Data Mining, and Classification 

The second thing we did was perform a complete literature review by looking for pertinent references 

in a variety of places, such as books, the internet, journal articles, and seminar sessions. Finding solutions 

to the issues faced by software developers requires us to use the findings of earlier studies as one of our 

primary references. We also employ data mining methods in this endeavor, particularly classification 

3. 

4. 5. 6. 

1. 2. 



        IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

146 

algorithms. Our literature review offers a greater grasp of the risk variables present during the software 

design phase and past solutions put forth by other researchers. We gather a variety of statistics regarding 

the methods applied, the data gathered, and the outcomes and conclusions reached. Our research has a solid 

theoretical base thanks to references from textbooks. We employ data mining techniques as a successful 

strategy in our efforts to address the challenges faced by software engineers. We may examine and analyze 

huge and complex data using data mining to find pertinent patterns, trends, and relationships. We 

concentrate on classification algorithms in the context of our research since they enable us to categorize 

risk elements throughout the software design phase. The C4.5 algorithm is one of the classification 

algorithms that we decided to use. A good decision tree approach for classifying data is the C4.5 algorithm. 

We can create a decision tree that will assist us in accurately classifying risk variables by utilizing the C4.5 

algorithm. The C4.5 algorithm has the advantage of being able to handle attributes of various data types, 

including continuous and categorical attributes. 

 

2.3.  Data Collection 

The procedure of gathering data is the next phase. We collected online quizzes and surveys to gather 
data in 2022, and we used the dataset from the website kaggle.com [17]. This dataset comprises of 100 

samples encompassing different qualities that are dispersed throughout numerous different nations. The 

information in the data comprises details like User_Id, Gender, Job Profile, Experience (in years), Project 

Type, Organization Size, Country, and Issues found because of risk factors during the software design 

phase. The information listed below was taken from Table 1 and used in this investigation. 

 

Table 1. Software design phase risk factor data set 

 

Column Description 

Gender Contains details about the gender and gender identity of those 

working on the project. 

Job Profile Provides details about the job descriptions or job titles of those 

working on the project. 

Experience Provides details about the project participants' degree of experience, 

such as years of experience. 

Project Type Contains a description of the project or dataset's subject, as well as 

a discussion of any issues or difficulties that were experienced. 

Organization size Provides details on the organization's or firm's size, such as whether 

it is a small, medium, or large company where the project's 

participants work. 

Country Describes the nation where the people or organizations working on 

the project or dataset are situated. 

The problem Contains an account of the issues or difficulties the project 

encountered. 

Requirements Document (RD) Describes the documentation or requirements that must be satisfied 

for the project to be completed. 

Improper Architectural Design 

(AD) 

Information about any flaws or mistakes in the project's software 

architectural architecture. 
Programming Language (PL) Details about the project's programming language. 

Physical Model Activity (PM) Explains the project-specific activities involved in creating physical 

models or hardware components. 

Verifying Design Activity 

(VD) 

This area may provide details regarding procedures for confirming 

or validating the software or hardware designs used in the project. 

Specifying Design Activity 

(SD) 

Includes details on the tasks involved in describing or defining the 

hardware or software design for a project. 

Documenting Design Activity 

(DD) 

Includes information on the processes involved in documenting or 

producing documentation pertaining to the project's software or 

hardware design. 



IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152  

 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

147 

2.4.  Data Preprocessing 

The data will be cleaned by the researcher, who will also take outliers and missing numbers. Data 

transformation can be used to adapt data to the needs of an algorithm. Techniques for dimensionality 

reduction can make complicated datasets simpler. In order to improve model performance and dataset 

simplicity, irrelevant features will be assessed and perhaps eliminated. 

 

2.5.  Application of the Decision Tree Method 

Following the initial data processing stage, we carried out the major analysis step by using the C4.5 

algorithm. A powerful decision tree algorithm for categorizing data is algorithm C4.5. We now utilize the 

C4.5 method to construct a decision tree that will assist us in categorizing risk concerns during the software 

design phase. The first step in putting the C4.5 algorithm into practice is choosing the property that is the 

most informative as the separator attribute at each stage of creating a decision tree. The C4.5 algorithm 

employs computation techniques like information gain and information gain ratio in order to choose the 

most informative feature. Using this strategy, we may assess and choose the characteristics that have the 

greatest impact on separating the data and arriving at the best conclusion. 

The root attribute in the C4.5 method is selected based on the current attributes' highest gain values. 

computing the entropy must come before computing the value gain. The analysis of the casing set's 

originality or variety is gauged using entropy [18]–[20]. 

Entropy calculation is done using the following Formula (1): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = ∑ − 𝑛 𝑖−1 𝑝𝑖 ∗ log2 𝑝𝑖           (1) 

 

S is the set of cases being considered, n is the total number of partitions in S, and pi is the ratio of each 

partition Si to S in this formula. 

Additionally, the acquisition value is determined using the Formula (2) below: 

 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)− ∑|𝑆𝑖||𝑆|𝑛𝑖−1 ∗ 𝐸𝑛𝑡𝑟𝑜 𝑝𝑦 (𝑆𝑖)    (2) 

 

In this formula, |Si| is the number of cases in the Si partition, and |S| is the number of cases in the set 

S. S is the set of instances being considered, A is the attribute being evaluated, n is the total partition arising 

from attribute A, and S is the number of cases in the set S. The C4.5 method can determine the entropy and 

value gain for each potential attribute using these formulas, allowing for the most insightful choice of the 

root attribute to construct a successful decision tree. 

The C4.5 algorithm will then create a decision tree based on the chosen separator properties [21]. 

Iteratively, decision trees are developed, with each stage dividing the data into smaller subgroups according 

to the chosen attribute values. The decision tree will keep growing until it either hits a stop condition or a 

condition where all of the data in that subset belong to the same class. The C4.5 algorithm additionally 

prunes while building the decision tree to prevent overfitting [22]. Tree branches that don't significantly 

contribute to classification performance are removed during pruning. Pruning allows us to create a decision 

tree that is both simpler and well-classifiable. Once the decision tree has been created, we may utilize it to 
categorize newly discovered data. Every node in the decision tree contains rules and decisions that must be 

followed in order to carry out the categorization process. These nodes will be traversed by fresh data until 

it hits a leaf that specifies the relevant class or classification. 

 

2.6.  Evaluation 

Our study also includes a comprehensive evaluation step to assess how well the C4.5 algorithm is 

working [23]. To evaluate the quality and efficiency of the C4.5 algorithm in categorizing risk factors at 

the software design stage, a variety of evaluation measures, including level of accuracy, precision, and 

recall are considered. The classification model's performance in research will be evaluated by RapidMiner 

using the formulas for accuracy (Formula 3), precision (Formula 4), recall (Formula 5). 

 

accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                 (3) 

 



        IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

148 

precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (4) 

 

recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (5) 

 

Important metrics including True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) are included in the classification model's evaluation measure. When the model accurately 

detects existent occurrences, the classification results are said to be true and correct, or TP. An inaccurate 

classification result is referred to be TN when the model accurately detects the absence of an event that is 

not present. The model incorrectly detects a categorization result that the FP contains even though it 

shouldn't. When the model fails to identify actual events, the classification results are not exact and are 

included in FN. 

We can learn more about how well the classification model performs in classifying data by measuring 

it using these measures. Accuracy, precision, and recall are calculated based on these measures. The degree 

of accuracy indicates how well the model can categorize both events and non-events. The degree of 

accuracy of the model's positive classification results is referred to as precision. Recall, often referred to as 

sensitivity, gauges how well a model can pinpoint each and every occurrence. 

 

 

3. RESULTS AND ANALYSIS 

The C4.5 decision tree technique is used in this study to categorize the risk factors in each section's 

software design stage. RapidMiner, which has been employed, is used to reference earlier studies [24]–

[26]. Data reading, filling in for missing numbers, and data splitting are the first steps. In the comparison, 

training data make up 70% and in-line test data make up 30%. 

In this study, the risk variables related to the software design stage are identified using the C4.5 

algorithm in RapidMiner. In this procedure, we gather information about finished software projects and 

pre-process it to make sure the dataset is accurate and comprehensive. The C4.5 method is then used to 

build model predictions utilizing the stages in RapidMiner. We train the model and evaluate its risk to see 

how well it can recognize relevant factors by utilizing training and testing subsets.  

Our evaluation's findings provide important light on the dangers that have a big impact on the software 

design phase. Figure 2 illustrates the procedure for detecting software design risk concerns. 

 

Figure 2. Risk factor classification model of software development with algorithm C4.5 

 



IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152  

 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

149 

The decision tree results produced by RapidMiner's C4.5 algorithm are shown in Figure 3. The 

decision criteria used in data classification are graphically represented by a decision tree. The decision tree 

is depicted in this picture with branches that describe the many attribute values utilized to make decision-

making decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Model decision tree using the C4.5 algorithm 

 

The interpretation of the data in Figure 3 because of the use of Algorithm C4.5 in this study provides 

a thorough grasp of the risk variables found during the software design stage. According to research, success 

in software design dramatically slows down positive resistance to requirements documents (RD8). In 

addition, when respondents agree strongly with RD8, there is a strong likelihood that questions about 

software design will obtain affirmative answers. Furthermore, success in software design is highly tied to 

good replies to specific requirements document sections, such as RD3 and RD2. Respondents who agreed 

with RD3 and RD2 were more inclined to give favorable responses to software design questions. As a 

result, this variable plays a crucial role in identifying risk issues throughout the software design stage. The 

importance of design documentation (DD4) in software design risk was also established. A good response 

to design documentation undermines success in software design. As a result, this study emphasizes the 

significance of effective documentation in risk management during the software design stage.  

Furthermore, the "Neutral" condition RD8 reveals differences in reactions between male and female 

respondents toward design documentation. This could imply that responses to design documentation are 

influenced by gender variables, which should be considered in risk reduction efforts. The response to RD1 

influenced software design as well, particularly when RD8 was graded "Strongly Disagree." Respondents 

who agree with RD1 are more likely to give affirmative answers to software design questions. As a result, 
consensus on early design concepts has a substantial impact on how software is perceived overall. Overall, 

the findings of this interpretation provide a comprehensive picture of the link between certain variables and 
risk during the software design stage. This understanding can serve as the foundation for more effective 

risk mitigation measures and better decision making in software development. 

The outcomes of the performance assessment for the C4.5 classification model are displayed in Table 

2 and Figure 4. This demonstrates that the C4.5 algorithm's average accuracy value is 99.3%, and a 

performance vector analysis is performed using the confusion matrix's recall and precision metrics. 

 

Table 2. Results of Confusion Matrix's using the C4.5 algorithm 

 True Yes True No 

Pred. Yes 21 2 

Pred. No 0 7 

 

 



        IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

150 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The results of the accuracy, recall and precision metrics using the C4.5 algorithm 

 
Based on the findings in Tables 2 and Figure 4 above, it is possible to infer that this study was 

successful in recognizing risk variables throughout the software design stage with a high level of accuracy, 

reaching 93.33%. This accomplishment illustrates the extent to which the C4.5 Algorithm can be effective 

in developing a model capable of accurately classifying risk factors. This model was successful in 

classifying most of the data, as evidenced by the Confusion Matrix, where the proportion of correct 

predictions (true positive and true negative) was far more than the proportion of incorrect predictions (false 

negative). The recall rate is important in this study since it demonstrates the model's capacity to detect 

occurring risk scenarios. The "Yes" category (risk event) has a 100% recall rate, suggesting that the 

algorithm is fully capable of identifying actual risk factors. However, the model has a propensity to ignore 

possible dangers that do not exist, as evidenced by the recall rate of 77.8% for the "No" (no risk) category.  

Aside from that, accuracy is a key criterion to consider while evaluating model performance. The 

precision of the "Yes" category is 91.30%, indicating that the model's "Yes" predictions are mostly correct. 

This suggests that the model can make accurate "Yes" predictions. Meanwhile, the precision of the "No" 

category reached 100%, indicating that the model's "No" predictions were correct. Overall, these findings 

indicate that the model developed using the C4.5 Algorithm can be a useful tool for detecting risk factors 

throughout the software design stage, with a fair level of accuracy and a good balance of recall and precision 

in classifying risk categories. 

 

4. CONCLUSION 

It is clear from the findings and discussion above that the goal of this study is to identify risk variables 

that may have an impact on software design in the first phases of development. This study was successful 

in creating a decision tree that offers significant insights into the risk factors that affect the success of 

software design by using the C4.5 Algorithm to the gathered data. The C4.5 Algorithm's decision tree 

generates recommendations for the variables that should be considered when designing software. The 

outcomes of decision tree interpretation demonstrate that replies to design challenges, such as the problem 

of documenting design activity (DD4), as well as responses to requirements document (RD), such as RD3 

and RD8, have a substantial impact on the success of software design. With the help of this conclusion, 

software engineers can take the necessary precautions to lessen or eliminate potential risks that might exist 

during the program design phase. 

In addition, it was discovered that the model created using the C4.5 Algorithm has a high level of 

accuracy (93.33%) from the findings of the performance model interpretation. This demonstrates that the 

model can classify risk factors accurately during the software design phase. The high levels of recall and 

precision suggest that this model can offer significant insights in comprehending the risks that may occur 

during the software design stage, even though there is a tiny propensity to miss dangers where there are 

none. Overall, this study significantly advances our understanding of risk variables at the software design 

stage and offers significant takeaways for academics and industry professionals working in the field of 

software development. The findings of this study can be utilized as a foundation for determining the best 

course of action for minimizing these risks and enhancing the effectiveness of the overall software design. 



IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152  

 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

151 

REFERENCES 

[1] A. Akhtar, B. Bakhtawar, and S. Akhtar, “EXTREME PROGRAMMING VS SCRUM: A 

COMPARISON OF AGILE MODELS,” International Journal of Technology, Innovation and 

Management (IJTIM), vol. 2, no. 2, Oct. 2022, doi: 10.54489/ijtim.v2i2.77. 

[2] J. Segura, “The Teaching of Usability in Software Development: Case Study in the Computer 

Engineering Career at the University of Matanzas,” International Journal of Engineering Pedagogy 

(iJEP), vol. 11, no. 1, p. 4, Jan. 2021, doi: 10.3991/ijep.v11i1.14837. 

[3] N. T. Al-Qemaqchi, “Transformation of Architectural Design Concepts During the Early Design 

Phase,” International Journal of Engineering Pedagogy (iJEP), vol. 12, no. 6, pp. 85–99, Dec. 2022, 

doi: 10.3991/ijep.v12i6.31717. 

[4] B. Kang, N. Crilly, W. Ning, and P. O. Kristensson, “Prototyping to elicit user requirements for 

product development: Using head-mounted augmented reality when designing interactive devices,” 

Des Stud, vol. 84, p. 101147, Jan. 2023, doi: 10.1016/j.destud.2022.101147. 

[5] A. Strielkina and A. Tetskyi, “Methodology for assessing satisfaction with requirements at the early 

stages of the software development process,” Radioelectronic and Computer Systems, no. 1, pp. 197–

206, Mar. 2023, doi: 10.32620/reks.2023.1.16. 

[6] H. Edison, X. Wang, and K. Conboy, “Comparing Methods for Large-Scale Agile Software 

Development: A Systematic Literature Review,” IEEE Transactions on Software Engineering, vol. 

48, no. 8, pp. 2709–2731, Aug. 2022, doi: 10.1109/TSE.2021.3069039. 

[7] S. Zapata, F. Gallardo, G. Sevilla, E. Torres, and R. Forradellas, “Trust evaluation in virtual software 

development teams using BERT-based language models,” J Comput Sci Technol, vol. 23, no. 1, p. 

e04, Apr. 2023, doi: 10.24215/16666038.23.e04. 

[8] A. Aslam et al., “Decision Support System for Risk Assessment and Management Strategies in 

Distributed Software Development,” IEEE Access, vol. 5, pp. 20349–20373, 2017, doi: 

10.1109/ACCESS.2017.2757605. 

[9] Z.-N. Li, X.-H. Huang, T. Mu, and J. Wang, “Attention-Based Lane Change and Crash Risk 

Prediction Model in Highways,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, 

no. 12, pp. 22909–22922, Dec. 2022, doi: 10.1109/TITS.2022.3193682. 

[10] P. Sotiropoulos, C.-M. Mathas, C. Vassilakis, and N. Kolokotronis, “A Software Vulnerability 

Management Framework for the Minimization of System Attack Surface and Risk,” Electronics 

(Basel), vol. 12, no. 10, p. 2278, May 2023, doi: 10.3390/electronics12102278. 

[11] M. J. H. Faruk, S. Subramanian, H. Shahriar, M. Valero, X. Li, and M. Tasnim, “Software 

Engineering Process and Methodology in Blockchain-Oriented Software Development: A 

Systematic Study,” in 2022 IEEE/ACIS 20th International Conference on Software Engineering 

Research, Management and Applications (SERA), IEEE, May 2022, pp. 120–127. doi: 

10.1109/SERA54885.2022.9806817. 

[12] A. Baraldi, L. D. Sapia, D. Tiede, M. Sudmanns, H. Augustin, and S. Lang, “Innovative Analysis 

Ready Data (ARD) product and process requirements, software system design, algorithms and 

implementation at the midstream as necessary-but-not-sufficient precondition of the downstream in 

a new notion of Space Economy 4.0 - Part 2: Software developments,” Big Earth Data, pp. 1–118, 
Oct. 2022, doi: 10.1080/20964471.2021.2017582. 

[13] A. Jadhav, M. Kaur, and F. Akter, “Evolution of Software Development Effort and Cost Estimation 
Techniques: Five Decades Study Using Automated Text Mining Approach,” Math Probl Eng, vol. 

2022, pp. 1–17, May 2022, doi: 10.1155/2022/5782587. 

[14] L. M. Alves, G. Souza, P. Ribeiro, and R. J. Machado, “Longevity of risks in software development 

projects: a comparative analysis with an academic environment,” Procedia Comput Sci, vol. 181, pp. 

827–834, 2021, doi: 10.1016/j.procs.2021.01.236. 

[15] A. Bombarda et al., “Guidelines for the development of a critical software under emergency,” Inf 

Softw Technol, vol. 152, p. 107061, Dec. 2022, doi: 10.1016/j.infsof.2022.107061. 

[16] A. R. Lendra and D. Firdaus, “IMPLEMENTATION OF C4.5 ALGORITHM TO ASSIST IN THE 

SELECTION OF FLOOR CONSTRUCTION PROJECTS,” IJISCS (International Journal of 

Information System and Computer Science), vol. 4, no. 3, p. 153, Nov. 2020, doi: 

10.56327/ijiscs.v4i3.947. 



        IT Jou Res and Dev, Vol.8, No.2, March 2024 : 143 - 152 

Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm, Akiyasul 

152 

[17] Khan T, “Software Design Phase Risk Factors,” 2023. 

https://www.kaggle.com/datasets/asif05amu/software-design-phase-risk-factors (accessed May 30, 

2023). 

[18] P. Varalakshmi, N. Vasumathi, and R. Venkatesan, “Tropical Cyclone prediction based on multi-

model fusion across Indian coastal region,” Prog Oceanogr, vol. 193, p. 102557, Apr. 2021, doi: 

10.1016/j.pocean.2021.102557. 

[19] B. F. Tanyu, A. Abbaspour, Y. Alimohammadlou, and G. Tecuci, “Landslide susceptibility analyses 

using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets,” Catena (Amst), vol. 

203, p. 105355, Aug. 2021, doi: 10.1016/j.catena.2021.105355. 

[20] P. K R and N. N C, “Lung Cancer Survivability Prediction based on Performance Using 

Classification Techniques of Support Vector Machines, C4.5 and Naive Bayes Algorithms for 

Healthcare Analytics,” Procedia Comput Sci, vol. 132, pp. 412–420, 2018, doi: 

10.1016/j.procs.2018.05.162. 

[21] S. Moral-García, C. J. Mantas, J. G. Castellano, and J. Abellán, “Using Credal C4.5 for Calibrated 

Label Ranking in Multi-Label Classification,” International Journal of Approximate Reasoning, vol. 
147, pp. 60–77, Aug. 2022, doi: 10.1016/j.ijar.2022.05.005. 

[22] X. Meng, P. Zhang, Y. Xu, and H. Xie, “Construction of decision tree based on C4.5 algorithm for 

online voltage stability assessment,” International Journal of Electrical Power & Energy Systems, 

vol. 118, p. 105793, Jun. 2020, doi: 10.1016/j.ijepes.2019.105793. 

[23] S. Lestari, Y. Yulmaini, A. Aswin, S. Sylvia, Y. A. Pratama, and S. Sulyono, “Implementation of the 

C4.5 algorithm for micro, small, and medium enterprises classification,” International Journal of 

Electrical and Computer Engineering (IJECE), vol. 12, no. 6, p. 6707, Dec. 2022, doi: 

10.11591/ijece.v12i6.pp6707-6715. 

[24] M. Z. Naser, “Machine learning for all! Benchmarking automated, explainable, and coding-free 

platforms on civil and environmental engineering problems,” Journal of Infrastructure Intelligence 
and Resilience, vol. 2, no. 1, p. 100028, Mar. 2023, doi: 10.1016/j.iintel.2023.100028. 

[25] S. Kim and H. Lee, “Customer Churn Prediction in Influencer Commerce: An Application of 

Decision Trees,” Procedia Comput Sci, vol. 199, pp. 1332–1339, 2022, doi: 

10.1016/j.procs.2022.01.169. 

[26] I. Garcia-Magarino, G. Gray, R. Lacuesta, and J. Lloret, “Survivability Strategies for Emerging 

Wireless Networks With Data Mining Techniques: a Case Study With NetLogo and RapidMiner,” 

IEEE Access, vol. 6, pp. 27958–27970, 2018, doi: 10.1109/ACCESS.2018.2825954. 

  

 


