
IT Journal Research and Development (ITJRD)

Vol.7, No.2, March 2023, E-ISSN : 2528-4053 | P-ISSN : 2528-4061

DOI : 10.25299/itjrd.2022.10437 184

Journal homepage: http://journal.uir.ac.id/index/php/ITJRD

Comparison of Huffman Algorithm and Lempel Ziv

Welch Algorithm in Text File Compression

Muhammad Alif1, Mohamad Nurkamal Fauzan2, Cahyo Prianto3

Department of Informatics Engineering, Polytechnic Pos Indonesia

alifmuhammad7210@gmail.com1, m.nurkamal.f@ulbi.ac.id2, cahyoprinato@ulbi.ac.id3

Article Info ABSTRACT

Article history:

Received Sep 01, 2022

Revised Oct 02, 2022

Accepted Dec 26, 2022

The development of data storage hardware has been very rapid over

time. In line with the development of storage hardware, the amount

of digital data shared on the internet is increasing every day. That

way, no matter how big the size of the storage device we have, of

course, it will only be a matter of time until that storage space is

exhausted. Therefore, in terms of maximizing storage space, a

technique called compression appeared. This study focuses on a

comparative analysis of two lossless compression technique

algorithms, namely the Huffman algorithm and Lempel Ziv Welch

(LZW). A number of test files with different file types are applied to

both algorithms that are compared. The performance of the algorithm

is determined based on the comparison of space-saving and

compression time. The test results showed that the Lempel Ziv Welch

(LZW) algorithm was superior to Huffman’s algorithm in.txt file type

compression and.csv. The average space savings produced were

63.85% and 77.56%. The degree of compression speed that each

algorithm produces is directly proportional to the file size.

Keyword:

Comparison

Compression

Lossless

Huffman

Lempel Ziv Welch

© This work is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International License.

Corresponding Author:

Muhammad Nurkamal Fauzan

Department of Informatics Engineering

Polytechnic Pos Indonesia

Sariasih Street No. 54, Sarijadi, Sukasari, Bandung City, West Java 40151, Indonesia

Email: m.nurkamal.f@ulbi.ac.id

1. INTRODUCTION

Technology is currently growing rapidly along with the changing era and holding

important role in the way humans communicate [1]. Currently, advances in information technology

changing human habits to exchange data and information, thereby increasing digital data requests.

The growth of devices and storage media is very fast from time to time. Today's data storage

hardware is very capable in terms of storing hundreds of gigabytes even up to terabytes per 1 unit

of hardware storage [2]. Currently, the capacity of hardware storage space often found/circulated in

the market has reached terabyte units or the equivalent of 1.000.000 megabytes [3]. If the analogy

has a text file with a size of 10 megabytes to be stored in the storage hardware, then the hardware

can only accommodate text files as many as 100.000 files. With fast-growing hardware storage, it

makes the costs of storage hardware to increase. On the other hand, the need for storage hardware

is urgently needed in save the resulting file at any time. Currently, there are many data compression

applications that have spread on the internet, both web-based and mobile-based. However, the data

security issues offered by the compression application need to be asked again considering that data

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

185

security is a very important aspect of an application. Data security is needed to prevent all forms of

information from reaching other parties who are not interested [4].

In line with the growth of storage hardware, the amount of digital data that is shared on the

internet is increasing day by day and is very easy to access[2]. That way no matter how big the size

of the storage device we have, of course, it will only be a matter of time until the storage space is

exhausted [2]. Using effective and efficient storage media is everyone's desire. The size of the data

has a big impact on the storage space, and also affects the data transmission speed [5]. Therefore, in

terms of maximizing storage space then appear a technique called compression.

Data compression is a study in computer science to reduce the file size before storing or

moving data into storage media. There are two types of data compression techniques, namely lossy

compression techniques, and Lossless compression techniques [6]. The lossy compression method

reduces the file size by removing some of the original data of the file. The file result cannot be

completely reconstructed. The general lossy compression method is used to compress file types

where data loss is not visible, such as files video, audio, and images [7]. Lossless Compression

reduces file size without loss of data (bits). In the Lossless compression method, the compressed

data can be restored to its original form, this process is called decompression [8]. Lossless data

compression algorithms can be categorized into two types, namely entropy-based encoding, and

dictionary-based encoding. Examples of entropy-based compression algorithms include Huffman

Encoding, Run Length Encoding, Arithmetic Coding, and Shannon-Fano Coding. The compression

algorithm based on dictionaries includes LZ77, LZ78, and Lempel-Ziv-Welch (LZW) [9].

In the study "Comparison of Huffman Method and Run Length Encoding on Document

Compression" by Pujianto, Mujito, Basuki Hari Prasetyo, and Anang Prabowo. In this study, a

comparison of two compression methods was discussed, namely the Run Length Encoding method

and the Huffman method. The data types used are document files with docx file types, pdf files,

xlsx files, and pptx files. To obtain the results of the comparative analysis, several parameters were

used in calculating the performance of the two compression algorithms, including the number of

compression results, the number of decompression results, the compression ratio, and how long the

compression time required. The results of this study show that Huffman's algorithm is superior

compared to the Run Length Encoding algorithm. It is shown that there is 1 pdf file that has

increased in file size after compression using the Run Length Encoding algorithm [13]. Another

study was "A Review on Different Types of Lossless Data Compression Techniques" by Anshul

Gupta and Prof. Sumit Nigam. A comparative analysis of various kinds of lossless compression

techniques was carried out. The algorithms compared include Huffman Coding, Shannon-Fano

Coding, RLE, LZW, LZ77, LZ78, and Lempel-Zev Welch. The results showed that data

compression was distinguished by two, namely entropy-based compression and dictionary-based

compression. The LZW algorithm shows greater efficiency in saving space than other algorithms.

The results showed that the LZW algorithm could save space by 81.31% [9].

In this study, an analysis of two lossless compression algorithms will be carried out to

obtain the maximum algorithm for compressing files, where the Huffman algorithm will be used as

a representation of entropy-based algorithms and the Lempel Ziv Welch (LZW) algorithm as a
dictionary-based algorithm representation. In this study, there are 3 types of input files that will be

used, namely .txt extension files, .csv extension files, and .docx extension files. Each test file type
consists of 12 test files that have different file sizes. Test files with txt extensions contain text data

written in Indonesian. The csv extension test file contains text data written in Indonesian. The docx

extension test file consists of a file that contains text only and a file containing text data along with

images written in Indonesian. The results of this study will show a comparison of

compression using the Huffman algorithm and the Lempel Ziv Welch algorithm, which is

shown using several parameters, namely the initial file size before compressing, the file

size after compression, the space saving value, and the length of time of the compression

process.

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

186

2. RESEARCH METHOD

2.1. Compression

Compression means reducing or compressing. Data compression is a method to compress

data or files to a smaller size than the original file, thereby reducing storage space and transmission

time for file transfer over the network. Most of the computer file types have the same data. With a

file compression program, you can eliminate the redundancy of the data owned, then list that

information once and then refer back to it whenever it appears in the original program.

Compression works by scanning the entire file for identified similar or repetitive data and patterns,

then replacing duplicates with a unique identifier. This identifier is typically much smaller than the

original word and takes up less space. As a result, the compressed file is significantly smaller in

size. Data compression is possible because many redundant bits are found in most real-world data.

Data compression can be done on various types of files including text, audio, image, and video

files. With compression, one can save more storage space [10].

2.2. Lossless Compression

 In lossless compression, a compression process is carried out on a file to reduce the size of

the file. With the lossless compression method, the original data from the file is maintained without

any damage or data loss when the data is not compressed. With this advantage, the lossless

compression method is very suitable in compressing with text file types, where the data or

information contained in it is very important [11].

2.3. Huffman Algorithm

Huffman's algorithm was first discovered in 1952, by A named David Huffman. The

Huffman Algorithm is a type of Lossless Algorithm entropy-based compression [9]. there is no

data loss during the compression process [7]. The draft used by the Huffman algorithm comes from

the binary tree used for performing the data compression process [12]. Huffman's algorithm uses

coding based on variable length where all characters are coded variable length based on how often

they appear in the text. Characters that appear most often receive the smallest code while the least

frequent get the largest code [7]. Code Huffman used almost the same principle as Morse code

where for each character encoded into a series of bits, each character’s most frequent occurrences

are encoded with shorter sequences of bits, and characters with the fewest occurrences are encoded

with the longer bit set [13]. There are four phases in the Huffman algorithm for text compression

[14]. The first phase is to group the character of the file to be compressed. The Second Phase is

building Huffman. The third stage is coding. The last phase, the fourth phase is to perform bit code

generation. The principle of the Huffman algorithm is that every character with multiple

occurrences is encoded with short bit strings and characters that appear slightly bit-encoding with a

longer series.

2.4. Lempel Ziv Welch Algorithm

The Lempel Ziv Welch (LZW) algorithm is an algorithm that was found and named after

its inventors Abraham Lempel, Jakob Ziv, and Terry Welch [7]. The LZW algorithm is a type of

dictionary-based lossless compression algorithm [15]. The simple LZW algorithm only replaces the

character string with a single code. Data compression with algorithm LZW starts from reading the

sequence of symbols, then grouping the symbols into strings, and in the end converting the string to

code [16]. During the compression process, variables; CHAR and STR are used. CHAR holds a

single character (that is, a single byte value between 0 and 255) while STR captures a group of one

or more characters. Every character in STR is one byte. The LZW algorithm starts by taking the

first byte of the file input and storing it in STR. After that, looping every additional byte of the

input file started. The next byte read from the input file is stored in CHAR, thus making a data

table. This table is scanned to confirm whether the code has been assigned to the circuit

STR+CHAR. It only outputs the code for the STR when a match in the table is not visible.

Otherwise, the STR+CHAR string is stored in STR, without further action [7].

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

187

2.5. Space Saving

Space saving is known as size reduction compared to uncompressed size [10]. Space

saving can be calculated by the following equation,

𝑆𝑝𝑎𝑐𝑒 𝑆𝑎𝑣𝑖𝑛𝑔 = 1 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
 𝑥 100% (1)

2.5. Compression Time

Compression time is the length of time it takes to execute the data compression algorithm

used [17].

2.6. Research Workflow

Figure 1. Research Workflow

This research starts by conducting a literature review to determine the algorithm to be

compared, then proceeds to the problem identification stage, namely formulating the problems

found in the form of questions. The next step is the determination of the algorithm to be compared,

at this stage it is proposed the Huffman algorithm and the Lempel Ziv Welch algorithm. Then the

Huffman algorithm and the Lempel Ziv Welch algorithm were implemented into an application

using a programming language. This implementation process takes place in 2 processes, namely the

process on the Huffman algorithm and the process on the Lempel Ziv Welch algorithm. The next

step is to test 2 compared algorithms to see the performance of the 2 algorithms. algorithms are

compared. The last step is to draw the conclusion of an algorithm that is superior to the 2

algorithms that have been compared.

3. RESULTS AND ANALYSIS

3.1. Algorithm Implementation

Furthermore, the proposed algorithms are the Huffman algorithm and the Lempel Ziv

Welch algorithm to compress text files. Huffman's algorithm and Lempel Ziv Welch’s algorithm

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

188

are translated into a programming language that was later created into a web-based application to

carry out the compression process.

Figure 2. Huffman Algorithm Action Selection Page

 Figure 2 is a page view of the selection of actions to be performed on the compression

process with the Huffman algorithm. On this page there are two types of actions that can be

selected, namely compressing data or decompressing data.

Figure 3. LZW Algorithm Action Selection Page

Figure 3 is a page view of the selection of actions to be performed on the compression

process with the Lempel Ziv Welch algorithm. On this page there are two types of actions that can

be selected, namely compressing data or decompressing data.

Figure 4. File Input Page on Huffman Algorithm

 Figure 4 is a display image for input or inserting a file to be compressed using the Huffman

algorithm. On this page, there is a sentence affirming that the accepted file type is a text file type.

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

189

Figure 5. File Input Page on LZW Algorithm

Figure 5 is a display image for input or inserting a file to be compressed using the Lempel

Ziv Welch algorithm. Similar to Figure 4, a statement on this page states that the allowed file type

is a text file type.

Figure 6. Huffman Algorithm Compression Result Page

Figure 6 above is a display after compression using the Huffman algorithm. This page will

display information in the form of file names, file sizes before and after compressing, compression

ratio, and compression time.

Figure 7. LZW Algorithm Compression Result Page

 Figure 7 above is a display after compression using the Lempel Ziv Welch algorithm. This

page will display information in the form of file names, file sizes before and after compressing,

compression ratio, and compression time.

3.2. TXT File Testing

The following is a summary table comparing the results of testing the compression process

using the Huffman algorithm and the Lempel Ziv Welch (LZW) algorithm against 12 test files with

extension .txt.
Table 1. TXT File test Result

No File Name Initial

file size

(bytes)

File size after

compression (bytes)

Space Saving (%) Compression Time

(second)

Huffman LZW Huffman LZW Huffman LZW

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

190

1 Test1.txt 104 132 95 -18.27 8.65 0.01 0.03

2 Test2.txt 523 372 359 28.87 31.36 0.08 0

3 Test3.txt 5086 2854 2574 43.89 49.39 0.34 0.02

4 Test4.txt 9661 5313 4409 45.01 54.36 0.65 0.06

5 Test5.txt 19654 10698 7701 45.57 60.82 1.3 0.05

6 Test6.txt 50636 27404 16180 45.88 68.05 3.21 0.09

7 Test7.txt 101413 54750 28766 46.01 71.63 6.39 0.17

8 Test8.txt 511338 275684 111337 46.09 78.23 32.27 0.9

9 Test9.txt 1025015 552510 193356 46.1 81.14 70.1 1.64

10 Test10.txt 2047233 1085909 339715 46.96 83.41 126.62 3.31

11 Test11.txt 5125077 2762017 601757 46.11 88.26 315.1 8.87

12 Test12.txt 9489772 5776526 936857 39.13 90.86 313.19 12.76

Average 38.45 63.85 72.44 2.33

Table 1 shows the comparison of the results of the compression process 12 test files with

the TXT extension. The information displayed includes the file name; the size of 12 files before

compression; a comparison of the sizes of 12 files compressed using the Huffman algorithm and

the Lempel Ziv Welch algorithm; a comparison of the space-saving value of 12 files compressed

using the Huffman algorithm and the Lempel Ziv Welch algorithm; and a comparison of the

compression time of 12 files compressed using the Huffman algorithm and the Lempel Ziv Welch

algorithm. The test was carried out in 2 stages. The first stage testing 12 test files using the

Huffman algorithm. The second stage is testing of 12 test files using the Lempel Ziv Welch

algorithm. Testing using the Huffman algorithm begins by inputting each test file (starting from the

test1 file.txt to test12.txt) alternately into the application, then selecting the type of Huffman

algorithm for the compression process, then the application performs the compression process

using the Huffman algorithm. Next, the application displays the information resulting from the

compression process, which includes the file name, file size before compressing, file size after

compressing, space saving value, and compression time. Testing using the Lempel Ziv Welch

algorithm starts by inputting each test file (starting from the test1 file.txt to test12.txt) alternately

into the application, then chooses the type of Lempel Ziv Welch algorithm for the compression

process, and then the application carries out the compression process using the Lempel Ziv Welch

algorithm. Next, the application displays the information resulting from the compression process,

which includes the file name, file size before compressing, file size after compressing, space saving

value, and compression time. Information on the compression results of 12 test files using the

Huffman algorithm and information on the results of the compression of 12 test files using the

Lempel Ziv Welch algorithm are summarized in a table that can be seen in table 1 above. From

table 1 above, the comparison results were obtained, namely the average space saving by the

Huffman algorithm was 38.45, the average space saving by the Lempel Ziv Welch algorithm was

63.85, the average compression time of the Huffman algorithm was 72.44, and the compression

time of the Lempel Ziv Welch algorithm was 2.33.

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

191

Figure 8. Space Saving Comparison of Huffman and LZW Algorithms on TXT Files

Figure 8 is a comparison diagram of the space savings produced by the Huffman algorithm

and the LZW algorithm. Huffman algorithm space saving is indicated by blue, LZW algorithm

space saving is indicated by red. Huffman's algorithm shows the highest space saving value of

46.96 and the lowest space saving value of 28.87. LZW algorithm shows the highest space saving

value of 90.86 and the lowest space saving value of 8.65.

Figure 9. Comparison of Compression Time of Huffman Algorithm and LZW Algorithm Against

TXT File

Figure 9 is a comparison diagram of the compression time generated by the Huffman

algorithm and the LZW algorithm. Huffman's algorithm compression time is indicated by blue,

LZW algorithm compression time is indicated by red. Based on the diagram, it can be concluded

that the LZW algorithm is faster in compressing TXT files than Huffman algorithms.

-18.27

28.87

43.89 45.01 45.57 45.88 46.01 46.09 46.1 46.96 46.11
39.13

8.65

31.36

49.39
54.36

60.82
68.05

71.63
78.23 81.14 83.41

88.26 90.86

-40

-20

0

20

40

60

80

100
Sp

ac
e

Sa
vi

n
g

(%
)

Space Saving Huffman vs LZW

Space Saving Huffman Space Saving LZW

0.01 0.08 0.34 0.65 1.3 3.21 6.39

32.27

70.1

126.62

315.1 313.19

0.03 0 0.02 0.06 0.05 0.09 0.17
0.9 1.64 3.31 8.87 12.76

0

50

100

150

200

250

300

350

Compression Time Huffman vs LZW

Waktu Kompresi Huffman Waktu Kompresi LZW

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

192

3.3. CSV File Testing

The following is a summary table comparing the results of testing the compression process

using the Huffman algorithm and the Lempel Ziv Welch (LZW) algorithm against 12 test files with

extension .csv.
Table 2. CSV File test Result

No File Name Initial

File Size

File size after

compression

Space Saving (%) Compression Time

(bytes) (bytes) (Second)

 Huffman LZW Huffman LZW Huffman LZW

1 Test1.csv 2350 1377 1044 41.4 55.57 0.06 0.04

2 Test2.csv 5149 3237 2832 37.13 45 0.22 0.02

3 Test3.csv 34997 20943 13180 40.16 62.34 1.22 0.07

4 Test4.csv 51589 32238 9756 37.63 81.13 1.89 0.08

5 Test5.csv 66539 39200 9799 41.08 85.27 2.79 0.14

6 Test6.csv 113479 70415 19018 37.95 83.24 4.69 0.19

7 Test7.csv 234466 149727 64225 36.14 72.61 9.49 0.45

8 Test8.csv 609462 23347 102861 61.73 83.12 14.3 0.98

9 Test9.csv 1182501 770623 114255 34.83 90.34 46.93 1.66

10 Test10.csv 2762130 1710073 293707 38.09 89.37 109.13 4.22

11 Test11.csv 6866709 4445867 419709 35.25 93.89 543.83 6.77

12 Test12.csv 9489772 5776526 1060770 39.13 88.82 700.87 7.28

Average 40.04 77.56 119.62 1.83

 Table 2 shows the comparison of the results of the compression process 12 test files with

the CSV extension. The information displayed includes the file name, the size of 12 files before

compression, a comparison of the sizes of 12 files compressed using the Huffman algorithm and

the Lempel Ziv Welch algorithm, a comparison of the space-saving value of 12 files compressed

using the Huffman algorithm and the Lempel Ziv Welch algorithm, and a comparison of the

compression time of 12 files compressed using the Huffman algorithm and the Lempel Ziv Welch

algorithm. The test was carried out in 2 stages. The first stage testing 12 test files using the

Huffman algorithm. The second stage is testing of 12 test files using the Lempel Ziv Welch

algorithm. Testing using the Huffman algorithm begins by inputting each test file (starting from the

test1 file.csv to test12.csv) alternately into the application, then selecting the type of Huffman

algorithm for the compression process, then the application performs the compression process

using the Huffman algorithm. Next, the application displays the information resulting from the

compression process, which includes the file name, file size before compressing, file size after

compressing, space saving value, and compression time. Testing using the Lempel Ziv Welch

algorithm starts by inputting each test file (starting from the test1 file.csv to test12.csv) alternately

into the application, then chooses the type of Lempel Ziv Welch algorithm for the compression

process, and then the application carries out the compression process using the Lempel Ziv Welch

algorithm. Next, the application displays the information resulting from the compression process,

which includes the file name, file size before compressing, file size after compressing, space saving

value, and compression time. Information on the compression results of 12 test files using the

Huffman algorithm and information on the results of the compression of 12 test files using the

Lempel Ziv Welch algorithm are summarized in a table that can be seen in table 2 above. From

table 2 above, the comparison results were obtained, namely the average space saving by the

Huffman algorithm was 40.04, the average space saving by the Lempel Ziv Welch algorithm was

77.56, the average compression time of the Huffman algorithm was 119.62, and the compression

time of the Lempel Ziv Welch algorithm was 1.83.

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

193

Figure 10. Space Saving Comparison of Huffman and LZW Algorithms on CSV Files

Figure 10 is a comparison diagram of the space savings produced by the Huffman

algorithm and the LZW algorithm. Huffman algorithm space saving is indicated by blue, LZW

algorithm space saving is indicated by red. Huffman's algorithm shows the highest space saving

value of 61.73 and the lowest space saving value of 34.83. LZW algorithm shows the highest space

saving value of 93.89 and the lowest space saving value of 45.

Figure 11. Comparison of Compression Time of Huffman Algorithm and LZW Algorithm Against

CSV File

Figure 9 is a comparison diagram of the compression time generated by the Huffman

algorithm and the LZW algorithm. Huffman's algorithm compression time is indicated by blue,

LZW algorithm compression time is indicated by red. Based on the diagram, it can be concluded

that the LZW algorithm is faster in compressing CSV files than Huffman algorithms.

41.4
37.13 40.16 37.63

41.08 37.95 36.14

61.73

34.83
38.09 35.25

39.13

55.57

45

62.34

81.13
85.27 83.24

72.61

83.12
90.34 89.37

93.89
88.82

0

10

20

30

40

50

60

70

80

90

100

Space Saving Algoritma Huffman vs LZW

Space Saving Huffman Space Saving LZW

0.06 0.22 1.22 1.89 2.79 4.69 9.49 14.3
46.93

109.13

543.83

700.87

0.04 0.02 0.07 0.08 0.14 0.19 0.45 0.98
1.66 4.22 6.77 7.28

0

100

200

300

400

500

600

700

800

Compression Time Huffman vs LZW

Waktu Kompresi Huffman Waktu Kompresi LZW

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

194

3.4. DOCX File Testing

The following is a summary table comparing the results of testing the compression process

using the Huffman algorithm and the Lempel Ziv Welch (LZW) algorithm against 12 test files with

extension .docx.

Table 3. DOCX File Test Result

No File Name Initial

File size

(bytes)

File size after

compression

(bytes)

Space Saving

(%)

Compression

time (Second)

Huffman LZW Huffman LZW Huffman LZW

1 Test1.docx 16202 15841 19905 2.23 -22.86 1.95 0.11

2 Test2.docx 34375 33920 45022 1.32 -30.97 4.14 0.14

3 Test3.docx 59341 59327 79977 0.07 -34.78 8.08 0.49

4 Test4.docx 75685 75933 101557 -0.33 -34.18 10.04 0.33

5 Test5.docx 111303 112094 149681 -0.71 -34.48 13.7 0.49

6 Test6.docx 291041 291287 335451 -0.08 -15.26 35.58 1.17

7 Test7.docx 448352 440213 481231 1.82 -7.33 54.61 1.72

8 Test8.docx 551820 552833 664338 -0.18 -20.39 69.24 2.36

9 Test9.docx 1026736 1027598 1225358 -0.12 -19.34 122.78 4.43

10 Test10.docx 2673142 2658357 3065425 0.55 -14.27 360.75 11.34

11 Test11.docx 3909414 3906816 4663422 0.07 -19.29 527.11 18.01

12 Test12.docx 4665822 4622234 4837630 0.93 -3.68 601.67 19.16

Average 0.46 -21.40 150.80 4.98

Table 3 shows the comparison of the results of the compression process 12 test files with

the DOCX extension. The information displayed includes the file name, the size of 12 files before

compression, a comparison of the sizes of 12 files compressed using the Huffman algorithm and

the Lempel Ziv Welch algorithm, a comparison of the space-saving value of 12 files compressed

using the Huffman algorithm and the Lempel Ziv Welch algorithm, and a comparison of the

compression time of 12 files compressed using the Huffman algorithm and the Lempel Ziv Welch

algorithm. The test was carried out in 2 stages. The first stage testing 12 test files using the

Huffman algorithm. The second stage is testing of 12 test files using the Lempel Ziv Welch

algorithm. Testing using the Huffman algorithm begins by inputting each test file (starting from the

test1 file.docx to test12.docx) alternately into the application, then selecting the type of Huffman

algorithm for the compression process, then the application performs the compression process

using the Huffman algorithm. Next, the application displays the information resulting from the

compression process, which includes the file name, file size before compressing, file size after

compressing, space saving value, and compression time. Testing using the Lempel Ziv Welch

algorithm starts by inputting each test file (starting from the test1 file.docx to test12.docx)

alternately into the application, then chooses the type of Lempel Ziv Welch algorithm for the

compression process, and then the application carries out the compression process using the

Lempel Ziv Welch algorithm. Next, the application displays the information resulting from the

compression process, which includes the file name, file size before compressing, file size after

compressing, space saving value, and compression time. Information on the compression results of

12 test files using the Huffman algorithm and information on the results of the compression of 12

test files using the Lempel Ziv Welch algorithm are summarized in a table that can be seen in table

3 above. From table 3 above, the comparison results were obtained, namely the average space

saving by the Huffman algorithm was 0.46, the average space saving by the Lempel Ziv Welch

algorithm was -21.40, the average compression time of the Huffman algorithm was 150.80, and the

compression time of the Lempel Ziv Welch algorithm was 4.98.

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

195

Figure 12. Space Saving Comparison of Huffman and LZW Algorithms on DOCX Files

Figure 12 shows the percentage of space saving from 2 algorithms compared, namely the

Huffman algorithm and the Lempel Ziv Welch (LZW) algorithm. The Lempel Ziv Welch (LZW)

algorithm shows the results of compression of 12 files failed. In figure 12, it is shown that in the

space saving of 12 files using the Huffman algorithm 7 test files were successfully compressed and

got space saving results below 3% and 5 test files failed and got minus space saving results.

Figure 13. Comparison of Compression Time of Huffman Algorithm and LZW Algorithm Against

DOCX File

 Figure 13 is a comparison diagram of the compression time generated by the Huffman

algorithm and the LZW algorithm. Huffman's algorithm compression time is indicated by blue,

LZW algorithm compression time is indicated by red. Based on the diagram, it can be concluded

that the LZW algorithm is faster in compressing CSV files than Huffman algorithms

2.23 1.32
0.07

-0.33 -0.71 -0.08

1.82

-0.18 -0.12

0.55 0.07 0.93

-22.86

-30.97

-34.78 -34.18 -34.48

-15.26

-7.33

-20.39 -19.34

-14.27

-19.29

-3.68

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Space Saving Algoritma Huffman vs LZW

Space Saving Huffman Space Saving LZW

1.95 4.14 8.08 10.04 13.7 35.58 54.61 69.24
122.78

360.75

527.11

601.67

0.11 0.14 0.49 0.33 0.49 1.17 1.72 2.36 4.43 11.34 18.01 19.16

0

100

200

300

400

500

600

700

Compression Time Huffman vs LZW

Waktu Kompresi Huffman Waktu Kompresi LZW

 IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

196

3.4. Discussion

Data compression is a study in computer science to reduce the size of a file before storing

or moving data to a storage medium. There are two types of data compression techniques, namely

lossy compression techniques and lossless compression techniques. An analysis of two lossless

compression algorithms will be carried out to obtain the maximum algorithm for compressing files,

of which the Huffman algorithm will be used as a representation of the entropy-based algorithm

and the Lempel-Ziv-Welch (LZW) algorithm will be used as a representative of the dictionary-

based algorithm. Based on tests conducted on TXT, CSV, and DOCX files, there are a few things

to be concerned about. In the compression of TXT files using the Huffman algorithm, there is one

file that fails. This is shown from the test results in the first test file where the size of the file after

compressing increased from 104 bytes to 123 bytes. Because the file size increases, it causes the

file compression value to be minus with a value of -18.27%. Based on these results, Huffman's

algorithm will be effective in carrying out the compression process on files larger than 100 bytes in

size. In CSV file compression, the Huffman algorithm and the LZW algorithm successfully

compress the 12 test file that has been provided. In DOCX file compression, the LZW algorithm

shows the result as 12 files failing to be compressed. The diagram shows the level of space saving

generated by the Lempel Ziv Welch (LZW) algorithm is below the value of 0 or produces a minus

value. With Huffman's algorithm, 7 test files were successfully compressed and got space-saving

results below 3%, and 5 test files failed to be compressed and got minus space-saving results.

Based on these results, it is considered that the Huffman algorithm is still ineffective because the

resulting compression results still have some test files that fail to compress. Based on testing of

TXT, CSV, and DOCX files, the compression time generated by the LZW algorithm is faster than

the Huffman algorithm.

4. CONCLUSION

Based on the research and tests that have been carried out on the comparison of the

Huffman algorithm and the LZW algorithm on the compression of text files, the following

conclusions can be drawn:

1. The Lempel Ziv Welch (LZW) algorithm is superior to Huffman’s algorithm in compressing

.txt files and .csv files. This is based on the average value of space saving generated by the

Lempel Ziv Welch (LZW) algorithm against .txt files and .csv files, namely 63.85% and

77.56%. The average space savings generated by the Huffman algorithm on .txt files and .csv

files are 38.45% and 40.04%.

2. In the compression test of the file .docx the Lempel Ziv Welch (LZW) algorithm failed, and the

size of the 12 test files increased. Algorithms Huffman is considered still ineffective because

the resulting compression results still have some test files that fail to compress and files that

have been successfully compressed, the space saving rate is below the value of 3%.

3. The speed of the compression process using the Huffman algorithm and the Lempel Ziv Welch

(LZW) algorithm does not depend on the data being processed but is directly proportional to

the size of the file to be compressed, which means that the larger the file size that will be

compressed, the longer it will take to perform compression. Based on testing of 3 types of test

files, namely .txt files, .csv, and .docx files, the compression speed produced by the Lempel

Ziv Welch (LZW) algorithm is superior to the Huffman algorithm.

REFERENCES

IT Jou Res and Dev, Vol.7, No.2, March 2023 : 184 - 197

Comparison of Huffman Algorithm and Lempel Ziv Welch Algorithm in Text File Compression, Nurkamal

197

[1] M. R. Ashila, N. Atikah, D. R. I. M. Setiadi, E. H. Rachmawanto, and C. A. Sari, “Hybrid

AES-Huffman Coding for Secure Lossless Transmission.”
[2] I. K. Jaya and R. Perangin-angin, “Analisa Perbandingan Rasio Kecepatan Kompresi

Algoritma Dynamic Markov Compression dan Huffman,” Publikasi Jurnal dan Penelitian
Teknik Informatika, vol. 2, pp. 78–85, 2018.

[3] Y. Murdianingsih and I. Isbahatunnisa, “IMPLEMENTASI METODE FUZZY TAHANI

DALAM MENENTUKAN REKOMENDASI PEMBELIAN LAPTOP (Studi kasus di

Toko Mega Alvindo Kalijati Subang),” Jurnal Teknologi Informasi dan Komunikasi STMIK

Subang, vol. 13, no. 1, pp. 41–51, 2020.

[4] N. I. Putri, R. Komalasari, and Z. Munawar, “PENTINGNYA KEAMANAN DATA

DALAM INTELIJEN BISNIS,” Jurnal Sistem Informasi, vol. 1, no. 2, pp. 41–49, 2020.

[5] Pujianto, Mujito, B. H. Prasetyo, and D. Prabowo, “Perbandingan Metode Huffman dan

Run Length Encoding Pada Kompresi Document,” InfoTekjar: Jurnal Nasional Informatika

dan Teknologi Jaringan, vol. 5, no. 1, pp. 216–223, 2020, doi:

10.30743/infotekjar.v5i1.2892.

[6] M. Ignatoski, J. Lerga, L. Stanković, and M. Daković, “Comparison of entropy and

dictionary based text compression in English, German, French, Italian, Czech, Hungarian,

Finnish, and Croatian,” Mathematics, vol. 8, no. 7, Jul. 2020, doi: 10.3390/MATH8071059.

[7] K. B. Adedeji, “Performance Evaluation of Data Compression Algorithms for IoT-Based

Smart Water Network Management Applications,” Journal of Applied Science & Process

Engineering, vol. 7, no. 2, pp. 554–563, 2020.

[8] A. Gupta, A. Bansal, and V. Khanduja, Modern Lossless Compression Techniques: Review,

Comparison and Analysis. 2017.

[9] A. Gupta and S. Nigam, “A Review on Different Types of Lossless Data Compression

Techniques,” International Journal of Scientific Research in Computer Science,

Engineering and Information Technology, vol. 7, no. 1, pp. 50–56, Jan. 2021, doi:

10.32628/cseit217113.

[10] A. Gopinath and M. Ravisankar, “Comparison of Lossless Data Compression Techniques,”

in Proceedings of the 5th International Conference on Inventive Computation Technologies,

ICICT 2020, Feb. 2020, pp. 628–633. doi: 10.1109/ICICT48043.2020.9112516.

[11] W. Semunigus and B. Pattanaik, “Analysis for Lossless Data Compression Algorithms for

Low Bandwidth Networks,” J Phys Conf Ser, vol. 1964, no. 4, pp. 1–5, Jul. 2021, doi:

10.1088/1742-6596/1964/4/042046.

[12] B. A. Krishna, N. Madhuri, and M. Malleswari, “Comparison and Implementation of

Compression Algorithms in WSNs,” IJERT Journal International Journal of Engineering

Research and Technology, vol. 8, no. 7, pp. 1039–1042, 2019, [Online]. Available:

www.ijert.org

[13] E. Prayoga and K. M. Suryaningrum, “IMPLEMENTASI ALGORITMA HUFFMAN DAN

RUN LENGTH ENCODING PADA APLIKASI KOMPRESI BERBASIS WEB,” 2018.
[14] A. P. U. Siahan, “IMPLEMENTASI TEKNIK KOMPRESI TEKS HUFFMAN,” Jurnal

Informatika, vol. 10, no. 2, pp. 1251–1261, 2016.
[15] G. Shrividhiya, K. S. Srujana, S. N. Kashyap, and C. Gururaj, “Robust data compression

algorithm utilizing LZW framework based on huffman technique,” in 2021 International

Conference on Emerging Smart Computing and Informatics, ESCI 2021, Mar. 2021, pp.

234–237. doi: 10.1109/ESCI50559.2021.9396785.

[16] H. N. Saad, F. mushtaq Jafar, and H. A. Salman, “A new compression technique in

MANET: Compressed-LZW algorithm,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 16, no. 2, pp. 890–896, 2019, doi: 10.11591/ijeecs.v16.i2.pp890-

896.

[17] R. Radescu, Comparative Study of Performances in Lossless Data Compression for English

and Romanian Text Files Using the Q-Coder. 2018.

